

AGENDA

REGULAR MEETING OF THE BOARD OF DIRECTORS LA PUENTE VALLEY COUNTY WATER DISTRICT 112 N. FIRST STREET, LA PUENTE, CALIFORNIA MONDAY, OCTOBER 13, 2025, AT 4:30 PM

- 1. CALL TO ORDER
- 2. PLEDGE OF ALLEGIANCE

J.	NOTE CALL OF BOARD OF BIRLETONS			
	President Escalera	_ Vice President Barajas	_ Director Argudo	
	Director Hernandez	Director Rojas		

4. PUBLIC COMMENT

Anyone wishing to discuss items on the agenda or pertaining to the District may do so now. The Board may allow additional input during the meeting. A five-minute limit on remarks is requested.

5. ADOPTION OF AGENDA

Each item on the Agenda shall be deemed to include an appropriate motion, resolution or ordinance to take action on any item. Materials related to an item on this agenda submitted after distribution of the agenda packet are available for public review at the District office, located at the address listed above.

6. APPROVAL OF CONSENT CALENDAR

DOLL CALL OF BOADD OF DIDECTORS

There will be no separate discussion of Consent Calendar items as they are considered to be routine by the Board of Directors and will be adopted by one motion. If a member of the Board, staff, or public requests discussion on a particular item, that item will be removed from the Consent Calendar and considered separately.

- A. Approval of Minutes of the Regular Meeting of the Board of Directors held on September 22, 2025.
- B. Receive and File PVOU-IZ Monthly Operations Reports for August 2025.
- C. Receive and File PVOU-SZ Monthly Operations Reports for August 2025.
- D. Approval of District's Expenses for the Month of September 2025.

- E. Approval of City of Industry Waterworks System Expenses for the Month of September 2025.
- F. Receive and File the District's Water Sales for September 2025.
- G. Receive and File the City of Industry Waterworks System's Water Sales Report for September 2025.

7. ACTION / DISCUSSION ITEMS

A. Consideration of Proposal for Replacement of Single Pass Ion Exchange Pre-Filters.

Recommendation: Authorize the General Manager to Purchase the SPIX Pre-Filters from Harrington Industrial Plastics

B. Consideration of Proposal from Karbonous to Perform LGAC Carbon Change-Out Services for the PVOU-IZ Treatment Facility.

Recommendation: Authorize the General Manager to enter into an Agreement with Karbonous

C. Consideration of Proposal from Global Urban Strategies, Inc. for Grant Writing and Research Services.

Recommendation: Authorize the General Manager to enter into a Professional Services Agreement with Global Urban Strategies, Inc.

D. Introduction of Ordinance No. 2025-01 Updating the Rules and Regulations Governing Water Service.

Recommendation: Consider the Introduction of Ordinance 2025-01 and Direct Staff to Proceed with Publication of the Ordinance in Advance of the October 27, 2025, Public Hearing to Consider Approval of the Ordinance

8. OPERATIONS AND TREATMENT REPORT

Recommendation: Receive and File.

9. ADMINISTRATIVE REPORT

10. GENERAL MANAGER'S REPORT

11. OTHER ITEMS

- A. Upcoming Events.
- B. Information Items.

12. ATTORNEY'S COMMENTS

13. BOARD MEMBER COMMENTS

- A. Report on Events Attended.
- B. Other Comments.

14. CLOSED SESSION

Conference with Real Property Negotiator (Government Code Section 54956.8)

Negotiator: General Manager Party: City of Industry

Property: Vacant property to east of Hacienda Blvd., south of Mayor Dave

Way and west/northwest of Rausch Road Under Negotiation: Price and Payment Terms

15. CLOSED SESSION REPORT

16. FUTURE AGENDA ITEMS

17. ADJOURNMENT

POSTED: October 9, 2025.

President John P. Escalera, Presiding.

Any qualified person with a disability may request a disability-related accommodation as needed to participate fully in this public meeting. In order to make such a request, please contact Mr. Roy Frausto, Board Secretary, at (626) 330-2126 in sufficient time prior to the meeting to make the necessary arrangements.

<u>Note:</u> Agenda materials are available for public inspection at the District office or visit the District's website at www.lapuentewater.com.

Page 3 of 3

REGULAR MEETING OF THE BOARD OF DIRECTORS LA PUENTE VALLEY COUNTY WATER DISTRICT 112 N. FIRST STREET, LA PUENTE, CALIFORNIA MONDAY, SEPTEMBER 22, 2025, AT 4:30 PM

1. CALL TO ORDER

President Escalera called the meeting to order at 4:30 pm.

2. PLEDGE OF ALLEGIANCE

President Escalera led the Pledge of Allegiance.

3. ROLL CALL OF BOARD OF DIRECTORS

President	Vice President	Director	Director	Director
Escalera	Barajas	Argudo	Hernandez	Rojas
Present	Present	Absent	Present	Present

OTHERS PRESENT

Staff and Counsel: General Manager & Board Secretary, Roy Frausto; Operations & Treatment Superintendent, Cesar Oritz; HR Coordinator/Admin Assistant, Angelina Padilla; and District Counsel, Reid Miller was present.

4. PUBLIC COMMENT

Resident, Georgene Navarrete, was in attendance but did not make any comments.

5. ADOPTION OF AGENDA

Motion: Adopt Agenda 1st: President Escalera 2nd: Director Rojas

	President	Vice President	Director	Director	Director
	Escalera	Barajas	Argudo	Hernandez	Rojas
Vote	Yes	Yes	Absent	Yes	Yes

Motion carried by a vote of: 4 Yes, 0 No, 0 Abstain, 1 Absent.

6. APPROVAL OF CONSENT CALENDAR

Motion: Adopt the Consent Calendar

1st: President Escalera 2nd: Director Hernandez

	President Escalera	Vice President Barajas	Director Argudo	Director Hernandez	Director Rojas
Vote	Yes	Yes	Absent	Yes	Yes

Motion carried by a vote of: 4 Yes, 0 No, 0 Abstain, 1 Absent.

7. FINANCIAL REPORTS

A. Summary of the District's Cash and Investments as of August 30, 2025.

Mr. Frausto provided a summary of the balances in each account and was available for any questions.

Motion: Receive and File 1st: Director Rojas 2nd: Director Hernandez

	President	Vice President	Director	Director	Director
	Escalera	Barajas	Argudo	Hernandez	Rojas
Vote	Yes	Yes	Absent	Yes	Yes

Motion carried by a vote of: 4 Yes, 0 No, 0 Abstain, 1 Absent.

B. Statement of District's Revenue and Expenses as of August 30, 2025.

Mr. Frausto provided a summary of the District's revenues and expenses and was available for any questions.

Motion: Receive and File 1st: President Escalera 2nd: Vice President Barajas

	President Escalera	Vice President Barajas	Director Argudo	Director Hernandez	Director Rojas
Vote	Yes	Yes	Absent	Yes	Yes

Motion carried by a vote of: 4 Yes, 0 No, 0 Abstain, 1 Absent.

C. Statement of the Industry Public Utilities Water Operations Revenue and Expenses as of August 30, 2025.

Mr. Frausto provided a summary of the IPU revenues and expenses and was available for any questions.

Motion: Receive and File 1st: Director Rojas 2nd: Director Hernandez

	President Escalera	Vice President Barajas	Director Argudo	Director Hernandez	Director Rojas
Vote	Yes	Yes	Absent	Yes	Yes

Motion carried by a vote of: 4 Yes, 0 No, 0 Abstain, 1 Absent

8. ACTION / DISCUSSION ITEMS

A. Consideration of Resolution No. 312 Approving the Updated and Consolidated Injury and Illness Prevention Program.

Ms. Padilla presented this staff report and was available for any questions.

Motion: Adopt Resolution No. 312

1st: President Escalera 2nd: Vice President Barjas

		President Escalera	Vice President Barajas	Director Argudo	Director Hernandez	Director Rojas
١	Vote	Yes	Yes	No	Yes	Yes

Motion carried by a vote of: 4 Yes, 0 No, 0 Abstain, 1 Absent

B. Ratification of Purchase for a New 2025 GMC Terrain.

Mr. Frausto presented the staff report on this item and was available for any questions.

Motion: Ratify the General Manager's Purchase of a 2025 GMC Terrain

1st: Vice President Barajas 2nd: Director Hernandez

		President Escalera	Vice President Barajas	Director Argudo	Director Hernandez	Director Rojas
Vo	ote	Yes	Yes	Yes	Yes	Yes

Motion carried by a vote of: 4 Yes, 0 No, 0 Abstain, 1 Absent

9. GENERAL MANAGER'S REPORT

Mr. Frausto gave the Board a legislative update and was available for questions.

10. OTHER ITEMS

A. Upcoming Events

Ms. Padilla went over the upcoming conferences with the Board.

B. Information Items

None.

11. ATTORNEY'S COMMENTS

None.

12. BOARD MEMBER COMMENTS

A. Report on Events Attended

None.

B. Other Comments

None.

13. FUTURE AGENDA ITEMS

None.

14. ADJOURNMENT

President Escalera adjourned the meeting at 4:47 pm.

Attest:

John P. Escalera, Board President	Roy Frausto, Board Secretary

PVOU-IZ Operations Report

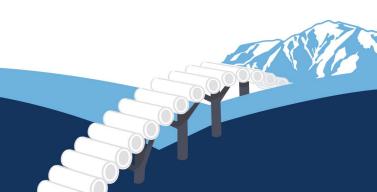
Date: September 22, 2025

To: Michael Shannon, Northrop Grumman Systems

Cc: Roy Frausto, General Manager

From: Davis To, Field Operations Engineer

Subject: PVOU-IZ Operations Monthly Report (August 2025)



In accordance with our Agreement for Operational Services of a Water Treatment Facility between the Northrop Grumman Systems (the "NG") and the La Puente Valley County Water District (the "District"), the District is providing a monthly operations report for August 2025. The report represents operational information along with the current status of various items listed under the appropriate heading.

PVOU-IZ Plant Operations Snapshot

Production Well	Current Well Operations	Well GPM
IZ-1	STANDBY	0
MZ-1	STANDBY	0
IZ-2	OFFLINE	0
MZ-2	STANDBY	0
MZ-3	ONLINE	285
IZ-East	ONLINE	420
IZ-West	STANDBY	0
TOTAL COMB	705	

Treatment Component	Current Operations	Flow GPM
LGAC System	ONLINE	680
SPIX System	ONLINE	680
UV System	ONLINE	680
RO System	ONLINE	680

^{*}Extraction Wells operated in different combinations and flow rates during treatment plant operation to balance flow and collect sample data.

Is Treatment Plant in Normal	No	As of what data:	7/31/2025
Operation Yes / No	NO	As of what date:	7/31/2023

Brief description below:

The Intermediate Zone Treatment System was taken out of normal continuous operation per direction from Stantec by email on July 31, 2025. On August 7, 2025, additional TPH sampling was conducted as directed by Stantec due to J-flag detection from the monthly NPDES results. Results were distributed to the team on August 12, and after review, Stantec concluded that the data was inconclusive. On August 18. 2025, Stantec directed the District to proceed with LGAC change-out for the four lead vessels. During the month, the District operated the IZ System to accommodate preventative maintenance visits by Trojan (UV/AOP) and Wigen (RO System). All operational water was discharged to sewer, with no surface water discharges occurring in the month. Aside from these activities, only routine periodic flushes were conducted to maintain system wetness and volume exchange throughout August 2025.

Extraction Wells - Online	Treatment Plant – Online	Extraction Wells – Offline	Treatment Plant – Offline
28.2 Hours	28.5 Hours	715.9 Hours	715.5 Hours
1.2 Days	1.2 Days	29.8 Days	29.8 Days

Summary: The IZ Treatment System was mostly offline during the month of August as noted above. The system will remain offline until LGAC procurement and replacement can take place. The system was operated in the month of August for preventative maintenance visits, TPH sampling and routine periodic flushes to maintain system wetness and volume exchange throughout August 2025.

Permitting

- SWRCB DDW: LPVCWD Drinking Water Supply Permit Amendment
 - As a result of the ongoing TPH issue, DDW is requiring a sampling plan to address sampling of all PVOU components (GAC, IX, UV, RO, etc.) for all the constituents each component is designed to treat along with TPH and PFAS. This sampling must be conducted prior to initiating operations once the permit amendment is fully completed.
 - LPVCWD retained Geosyntec Consultants to develop a Sampling Plan to satisfy DDW's requirement.
 LPVCWD sent draft version to DDW on June 6, 2025.
 - LPVCWD provided an updated final Sampling Plan to DDW for review and approval on June 24, 2025. Currently pending review comments and/or approval from DDW.
 - o DDW also indicated that they plan to add additional provisions to the engineering report pertaining to TPH.

Supply and Production

• PVOU-IZ Monthly Well Production/Total Water Extracted

Well	Beginning Read 8/1/2025 (Kgals)	Ending Read 9/1/2025 (Kgals)	Units Produced (Kgals)	Production (Acre Feet)
IZ-1	288723	288723	0	0.00
MZ-1	271067	271067	0	0.00
IZ-2	16031	16031	0	0.00
MZ-2	338083	338083	0	0
MZ-3	610841	615470	4,629	1.42
IZ-East	755629	762526	6,897	2.12
IZ-West	552271	552271	0	0.00
	Total IZ Production		11,526	3.54

• PVOU-IZ Well Levels (Sounder)

Well	Static Water Level	Pumping Water Level	Drawdown
IZ-1	64'5"	-	-
MZ-1	57'	-	-
IZ-2	-	-	-
MZ-2	-	-	-
MZ-3	53'	-	-
IZ-East	70'6"	-	-
IZ-West	66'	-	-

• PVOU-IZ Monthly Water Volume Processed

IZ-Raw Water Flow Meter	Timeframe	Total Flow (MG)
FQIT-1002	8/1/25 – 8/31/25	1.15

• PVOU-IZ Monthly Metered Deliveries

System	Beginning Read (Kgals)	Ending Reads (Kgals)	Average GPM	Units Produced	Deliveries in Acre Feet
LPVCWD	0	0	0	0	0
SWS	0	0	0	0	0
CIWS	0	0	0	0	0
Surface Water	2,034,753	2,034,753	-	0	0
	Total	0	0		

• Total Production (Extraction Wells) Vs. Total Deliveries

Total Production in Acre Feet	Total Deliveries in Acre Feet	Total Water Loss in Acre Feet
-3.54	0	-3.54

• Water Discharged to Waste/Brine Discharged (IZ & SZ)

Wastewater Discharge Flow Meter	Beginning Read 8/1/2025 (Kgals)	Ending Read 9/1/2025 (Kgals)	Units Produced (Kgals)	Wastewater (Acre Feet)
*FQIT-3301	1,020,867	1,032,242	11,375	3.49

^{*}Please note – The wastewater flow meter (FQIT-3301) total flow captures all wastewater from IZ & SZ operations that is discharged to the brine transmission line.

Chemicals Consumed

Chemical Type	8/1/25 (Data from Round Sheets) - Gals.	8/31/25 (Data from Round Sheets) - Gals.	Total Consumed – Gals.
Sulfuric Acid (H ₂ SO ₄)	1449	1309	140
Hydrogen Peroxide (H ₂ O ₂)	1540	**3943	97
*Sodium Bisulfite (NaHSO ₃)	-	-	-
Scale Inhibitor	614	605	9
Sodium Hydroxide (NaOH)	681	646	35
*Sodium Hypochlorite (NaOCI)	-	-	-

^{*}Chemicals currently not being used in August 2025.

^{**}Chemical delivery of Hydrogen Peroxide occurred in August 2025 of approximately 2,500 gallons.

Water Quality

- **IZ Drinking Water Monitoring (DDW)** District Staff did not collect any DDW permit water quality samples from the IZ system for the month of August.
- IZ Surface Water Discharge Monitoring (NPDES) District Staff did not collect any NPDES discharge samples from the IZ system for the month of August.
- IZ Sewer Discharge Monitoring (LACSD) District Staff collected required discharge samples from the IZ system for the month of August; 4 samples were collected for bi-weekly surcharge monitoring.

 Attachment A: Final COA Report from August 8 & 21, 2025, sample events.
 - **IZ Air Monitoring (SCAQMD)** District Staff collected required SCAQMD permit air samples from the IZ system for the month of August, 26 samples were collected.

 Attachment B: Final COA Report from August 14, 2025, sample event.
- IZ Other Samples District Staff collected requested TPH samples for the month of August, 39 samples
 were collected for the special sampling event.
 Attachment C: Final COA Report from August 7, 2025, sample event.

Compliance Reporting

- IZ Drinking Water Monitoring (DDW) District Staff submitted no DDW water quality reports pertaining to the PVOU-IZ during August.
- **IZ Surface Water Discharge Reporting (NPDES) -** District Staff submitted no NPDES water quality reports pertaining to the PVOU-IZ (and SZ) during August.
- **IZ Sewer Discharge Reporting (LACSD)** District Staff submitted no LACSD water quality reports pertaining to the PVOU-IZ during August.

Repair/Replace/Optimization Activities

- Repairs
 - AIT-2145 (pH) Existing probe drifting and unable to hold calibration, new pH probe ordered and installed.
 - AIT-2155 (ORP) Existing probe drifting and unable to hold calibration, new ORP probe ordered and installed.

Pre-RO Analyzer Panel (AIT-2145 & AIT-2155 probes replaced)

o Ion Exchange Differential Pressure and Sample Port Feed Line Modifications – The District determined approach and ordered materials to separate dissimilar metals from IX system valve tree and feed lines for different pressure transmitters, sample ports and pressure gauges. The District completed the modifications to separate dissimilar metals for the differential pressure gauges. The sample port and pressure gauge feed lines are in progress and are anticipated to be completed in September 2025. See photos below:

Maintenance Work

- Recalibrate analyzers As-Needed
- Trojan UV Preventative Maintenance Site Visit
 - Identify and replace failed lamps 1 driver replaced Train 1 C1S1 Lamp 51-52.
 - Identify and resolve system alarms Rotation of the trains and sections were confirmed to be enabled.
 - Log lamp hours.

- Inventory spare parts onsite.
- Wigen RO Preventative Maintenance Site Visit
 - Collected data to evaluate system performance.
 - Confirm calibration of RO system analyzers.
 - Confirm calibration of scale inhibitor and sodium hydroxide pumps.
- FQIT/FE-3301 Wastewater Flow Meter Hydraulic Calibration The District contracted with Conservtech to conduct a hydraulic calibration on the wastewater flow meter per the LACSD IWDP requirements. The hydraulic calibration was completed on August 22, 2025.
- Record static water levels at Extraction Wells.
- Housekeeping:
 - Cleaned gear boxes and appurtenances at IX system
 - Cleaned analyzer site glasses
 - General site cleaning

Upcoming Repair/Replace Activities

- IZ LGAC Pre Filter 3500B -
 - The District provided an email to NG detailing the issues of the LGAC Pre Filter 3500B on April 23, 2025. NG responded with additional background information and indicated that they are further evaluating the root cause of the issue. Stantec on behalf of NG sent a technical memo that outlines a scope of work to address the issue on July 10, 2025. LPVCWD is reviewing the memo and looking to execute this work. See photos below:

Multimedia Filter System –

- MMF FCV-2005-2 Valve not responding to SCADA. The District scheduled Valve King (local valve representative) to evaluate on June 24, 2025. The Valve King technician was not able to resolve, will need to return to site to resolve. The District is reaching out to another Electric and Controls Contractor for feedback regarding this issue.
- FE/FIT-2000-1 & 2 Display is not reading correctly or responding to system. The District in communication with Golden Meters (Krohne Local Representative), Golden Meters assessed and determined display/register not operational. The District and Golden Meters discussed installing replacement meters with remote setup to avoid previous direct sunlight issue. The Purchase Orders (PO's) have been signed by the District and are awaiting scheduling confirmation from the vendor.

Reverse Osmosis System

RO Skid 5 – Displays for flow meters and conductivity displays are damaged from sun exposure. The
District to implement temporary and permanent solutions for protection. See photos below:

- Program Changes/Optimization The District in communication with Wigen (RO Vendor) to discuss programming optimizations such as rotation of RO Trains and Multimedia Filters, enabling autoflush when the system is offline, RO startup/shutdown sequencing, etc. The District has received a quote from Wigen for the proposed programming optimizations. Due to workload in the remainder of 2025, the IZ RO Programming modifications will be forecasted to be revisited in 2026.
- IZ Analyzers District met with HACH Representative on June 11, 2025, to discuss replacement of ATI analyzers with HACH analyzers to benefit overall reliability of the water analyzers at the treatment system as well as suitability for setting up one service contract for all analyzers at the plant. HACH followed up with quote, the District reviewing and determining next steps. See photos below:

IZ – LGAC and LPGAC Air Vacs –

The District has observed leak issues with the air vacuum valves at the top of the LGAC vessels and LPGAC vessels. The District had previously replaced the Multimedia Filters air vacs with ARI D-040 and have not experienced any major leak issues following installation. The District uses the ARI D-040 in several instances and view them as best fit to replace current air vacuum valves at the LGAC and LPGAC vessels to resolve the issue. The District is in the process of determining a path forward to replace the air vacs with the AIR D-040 and tie-in with the existing system components.

NG Requested Upgrades

- IZ and SZ Level PLC Upgrade The District contracted with Franks Industrial. Frank's Industrial Service's currently waiting on receiving parts (hardware) to initiate work. Frank's Industrial Service's is scheduled to conduct this work in September 2025.
- Standard Operating Procedures (SOP) Development The District received approval from NG to proceed with Kennedy Jenks for development of SOPs and Unit Process Guidelines. The District received approval from their Board of Directors and is in the process of setting up contract documents with Kennedy Jenks.
- LGAC Carbon Changeout Following NPDES results and a team discussion, the District was directed to
 move forward with procurement of LGAC carbon replacement for the four (4) lead vessels of the LGAC 1100
 system in response to J-Flag detections of TPH in the NPDES sampling results. The District is in the process
 of preparing an RFP for bidding contractors. The RFP is anticipated to be issued in early September with
 bids being due in mid-September.
- **IZ-2/MZ-2 Well Vault Lids** The District contracted the SOW with a Contractor to replace the IZ-2/MZ-2 well vault lids. The work is scheduled to be conducted in September 2025.
- Cybersecurity Stantec on behalf of Northrop Grumman issued a SOW for Cybersecurity upgrades at the PVOU Plant. The District has been in communication with firms recommended in the scope but will need Stantec's assistance to answer technical questions with the firms.

Outages

No outages or anomalies to report occurred during August 2025.

Capital Improvement Items

• Secondary SWS Interconnection – NG consultants provided an alternative conceptual design for this work. Alternative design was reviewed by LPVCWD and there was one key issue. The District provided a response with their stance via e-mail on June 10, 2025. Northrop Grumman provided a response with their stance via response letter dated July 2, 2025. Both teams agree to continue meeting and conferring in good faith to further discuss at a later time.

Performance Contracts

- Wigen Reverse Osmosis System (Preventative Maintenance) The District scheduled Wigen to be
 onsite for assessment and preventative maintenance work on a quarterly basis for the IZ & SZ-S Systems.
 The quarterly scheduled preventative maintenance visit was conducted on the week of August 25, 2025.
- Trojan UV/AOP System (Preventative Maintenance) The District scheduled Trojan to be onsite for assessment and preventative maintenance work on a quarterly basis for the IZ & SZ-S Systems. The quarterly scheduled preventative maintenance visit was conducted on the week of August 18th, 2025.

Other

- TPH Sampling
 - TPH sampling continued in August, Stantec on behalf of Northrop Grumman requested LPVCWD conduct TPH sampling at various points of the IZ Treatment Plant which was conducted on August 7th, 2025.
- **Standard Operating Procedures SOPs –** The following SOPs have been developed for the use of the District's Operation Staff:
 - Sampling for Bacteriological Contaminants Training conducted 7/22/25
 - Sampling for VOCs
 - Sampling for SOCs
 - Sampling for Radionuclides
 - Sampling for PFAS
 - Chemical Safety Awareness Training conducted 5/30/25

ATTACHMENT A

FINAL REPORT

Work Orders: 5G28029 Report Date: 8/26/2025

Received Date: 8/8/2025

Turnaround Time: Normal

Phones: (626) 330-2126

Fax: (626) 330-2679

P.O. #:

Billing Code:

Project: LACSD Bi-Monthly

Attn: Cesar Ortiz

Client: La Puente Valley County Water

P.O Box 3136; 112 N.First St. La Puente, CA 91744

DoD-ELAP ANAB #ADE-2882 ◆ DoD-ISO ANAB # ◆ ELAP-CA #1132 ◆ EPA-UCMR #CA00211 ◆ ISO17025 ANAB #L2457.01 ◆ LACSD #10143

This is a complete final report. The information in this report applies to the samples analyzed in accordance with the chain-of-custody document. Results are related only to the items tested. Weck Laboratories certifies that the test results meet all requirements of TNI unless noted by qualifiers or written in the Case Narrative. The report may include analytes that are not currently accreditable by some state agencies or accrediting bodies. This analytical report must be reproduced in its entirety.

Dear Cesar Ortiz,

Enclosed are the analytical results for the samples submitted under the attached Chain of Custody document. All analyses adhered to the method criteria, except where noted in the case narrative, sample condition checklist, and/or data qualifiers.

Reviewed by:

Kenneth C. Oda For Valerie I. Ayo

Project Manager

5G28029 Page 1 of 5

FINAL REPORT

La Puente Valley County Water P.O Box 3136; 112 N.First St. La Puente, CA 91744 Project Number: LACSD Bi-Monthly

Project Manager: Cesar Ortiz

Reported:

08/26/2025 16:06

Sample Condition

Temperature	23.40	С	
COC present	~	COC completed properly	~
COC matches sample labels	~	Wet ice	
Blue ice	~	Sample(s) intact	~
Sample(s) using proper containers	~	Sample(s) have sufficient sample volume	~
Sample(s) received within hold time	~	Sample(s) labels have correct preservation	~
Sample(s) have acceptable pH	~	Sample(s) have acceptable Cl	

Sample Summary

Sample Name	Sampled By	Lab ID	Matrix	Sampled	Qualifiers
SP-3301 (22237- PVOU- IZ & SZ South)	Jordan Navarro	5G28029-01	Water	08/08/25 13:06	

5G28029 Page 2 of 5

FINAL REPORT

La Puente Valley County Water P.O Box 3136; 112 N.First St. La Puente, CA 91744 Project Number: LACSD Bi-Monthly

Project Manager: Cesar Ortiz

Reported:

08/26/2025 16:06

Sample Results

Sample: SP-3301 (22237- PVOU- IZ & SZ South)

Sampled: 08/08/25 13:06 by Jordan Navarro

5G28029-01 (Water)

Analyte Result MDL MRL Units Dil Analyzed Qualifier Conventional Chemistry/Physical Parameters by APHA/EPA/ASTM Methods

Method: EPA 410.4 Instr: UVVIS05

Neuron. El A TIO.4

 Batch ID: W5H1191
 Preparation: _NONE (WETCHEM)
 Prepared: 08/15/25 09:26
 Analyst: jls

 Chemical Oxygen Demand
 5.1
 2.9
 5.0
 mg/l
 1
 08/19/25

Method: SM 2540D Instr: OVEN18

 Batch ID: W5H0688
 Preparation: _NONE (WETCHEM)
 Prepared: 08/11/25 09:56
 Analyst: mes

 Total Suspended Solids
 5
 mg/l
 1
 08/11/25

5G28029 Page 3 of 5

FINAL REPORT

La Puente Valley County Water P.O Box 3136; 112 N.First St. La Puente, CA 91744 Project Number: LACSD Bi-Monthly

Project Manager: Cesar Ortiz

Reported:

08/26/2025 16:06

Quality Control Results

					Spike	Source		%REC		RPD	
Analyte	Result	MDL	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
Batch: W5H0688 - SM 2540D											
Blank (W5H0688-BLK1)				Pre	pared & An	alyzed: 0	8/11/2	5			
Total Suspended Solids	ND	5	5	mg/l		_					
LCS (W5H0688-BS1)				Pre	pared & An	alyzed: 0	8/11/2	5			
Total Suspended Solids		5	5	mg/l	71.0		97	90-110			
Duplicate (W5H0688-DUP1)		5G2804	0-01	Pre	pared & An	alyzed: 0	8/11/2	5			
Total Suspended Solids	135	5	5	mg/l		148			9	10	
Batch: W5H1191 - EPA 410.4											
Blank (W5H1191-BLK1)				Prepare	d: 08/15/25	Analyze	d: 08/1	19/25			
Chemical Oxygen Demand	ND	2.9	5.0	mg/l							
LCS (W5H1191-BS1)					d: 08/15/25	Analyze					
Chemical Oxygen Demand	190	12	20	mg/l	200		95	90-110			
LCS (W5H1191-BS2)					d: 08/15/25	Analyze					
Chemical Oxygen Demand	1920	12	20	mg/l	2000		96	90-110			
Duplicate (W5H1191-DUP1)		5H0807	-	-	d: 08/15/25		d: 08/1	19/25			
Chemical Oxygen Demand	717	5.8	10	mg/l		722			0.7	15	
Matrix Spike (W5H1191-MS1)		5G1101	-		d: 08/15/25						
Chemical Oxygen Demand	217	12	20	mg/l	200	32.5	92	90-110			
Matrix Spike (W5H1191-MS2)		5H1203	-	-	d: 08/15/25						
Chemical Oxygen Demand	2280	12	20	mg/l	2000	470	90	90-110			
Matrix Spike Dup (W5H1191-MSD1)		5G1101	-		d: 08/15/25						
Chemical Oxygen Demand	219	12	20	mg/l	200	32.5	93	90-110	0.9	15	
Matrix Spike Dup (W5H1191-MSD2)		5H1203	2-01	Prepare	d: 08/15/25	Analyze		19/25			
Chemical Oxygen Demand	2320	12	20	mg/l	2000	470	93	90-110	2	15	

FINAL REPORT

La Puente Valley County Water P.O Box 3136; 112 N.First St. La Puente, CA 91744

Definition

Project Number: LACSD Bi-Monthly

Reported:

08/26/2025 16:06

Item

Notes and Definitions

%REC	Percent Recovery
Dil	Dilution
MDL	Method Detection Limit
MRL	Method Reporting Limit (MRL) is the minimum levels, concentrations, or quantities of a target variable (e.g., target analyte) that can be reported with a specified degree of confidence. The MRL is also known as Limit of Quantitation (LOQ)
ND	NOT DETECTED at or above the Method Reporting Limit (MRL). If Method Detection Limit (MDL) is reported, then ND means not detected at or above the MDL.
RPD	Relative Percent Difference

Project Manager: Cesar Ortiz

Any remaining sample(s) will be disposed of one month from the final report date unless other arrangements are made in advance.

All results are expressed on wet weight basis unless otherwise specified.

Sample that was matrix spiked or duplicated.

All samples collected by Weck Laboratories have been sampled in accordance to laboratory SOP Number MIS002.

FINAL REPORT

Work Orders: 5H11028 **Report Date:** 9/11/2025

Received Date: 8/21/2025

Project: PVOU - LACSD Surcharge - Bi-Weekly

Turnaround Time: Normal

Phones: (626) 330-2126

Fax: (626) 330-2679

P.O. #:

Billing Code:

Attn: Roy Frausto

Client: La Puente Valley County Water

P.O Box 3136; 112 N.First St. La Puente, CA 91744

DoD-ELAP ANAB #ADE-2882 • DoD-ISO ANAB # • ELAP-CA #1132 • EPA-UCMR #CA00211 • LACSD #10143

This is a complete final report. The information in this report applies to the samples analyzed in accordance with the chain-of-custody document. Results are related only to the items tested. Weck Laboratories certifies that the test results meet all requirements of TNI unless noted by qualifiers or written in the Case Narrative. The report may include analytes that are not currently accreditable by some state agencies or accrediting bodies. This analytical report must be reproduced in its entirety.

Dear Roy Frausto,

Enclosed are the analytical results for the samples submitted under the attached Chain of Custody document. All analyses adhered to the method criteria, except where noted in the case narrative, sample condition checklist, and/or data qualifiers.

Reviewed by:

Kenneth C. Oda For Valerie I. Ayo

Project Manager

FINAL REPORT

La Puente Valley County Water P.O Box 3136; 112 N.First St. La Puente, CA 91744 **Project Number:** PVOU - LACSD Surcharge - Bi-Weekly

Reported: 09/11/2025 15:07

Project Manager: Roy Frausto

Sample Condition

Temperature	17.10	C	
COC present	~	COC completed properly	~
COC matches sample labels	~	Wet ice	
Blue ice	~	Sample(s) intact	~
Sample(s) using proper containers	~	Sample(s) have sufficient sample volume	~
Sample(s) received within hold time	~	Sample(s) labels have correct preservation	~
Sample(s) have acceptable pH	~	Sample(s) have acceptable Cl	

Sample Summary

Sample Name	Sampled By	Lab ID	Matrix	Sampled	Qualifiers
SP-3301 (22237- PVOU- IZ & SZ South)	Jordan Navarro	5H11028-01	Water	08/21/25 13:54	

5H11028 Page 2 of 5

mg/l

FINAL REPORT

08/27/25

La Puente Valley County Water P.O Box 3136; 112 N.First St. La Puente, CA 91744

Total Suspended Solids

Project Number: PVOU - LACSD Surcharge - Bi-Weekly

Reported: 09/11/2025 15:07

Project Manager: Roy Frausto

Sample: SP-3301 (22237- PVOU- IZ & SZ South) Sampled: 08/21/25 13:54 by Jordan Navarro

5H11028-01 (Water) **Analyte** Result MDL MRL Units Analyzed Qualifier Conventional Chemistry/Physical Parameters by APHA/EPA/ASTM Methods Method: EPA 410.4 Instr: UVVIS05 Batch ID: W5H1953 **Preparation:** _NONE (WETCHEM) Prepared: 09/02/25 10:07 Analyst: jls Chemical Oxygen Demand 2.9 5.0 09/05/25 mg/l Instr: OVEN18 Method: SM 2540D **Batch ID: W5H2188 Preparation:** _NONE (WETCHEM) Prepared: 08/27/25 13:33 Analyst: mgl

5

FINAL REPORT

La Puente Valley County Water P.O Box 3136; 112 N.First St. La Puente, CA 91744 Project Number: PVOU - LACSD Surcharge - Bi-Weekly

Reported: 09/11/2025 15:07

Project Manager: Roy Frausto

Quality Control Results

Conventional Chemistry/Physical Param	neters by	APHA/EP	A/ASTI	Methods							
Analyte	Result	MDL	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifie
Batch: W5H1953 - EPA 410.4											
Blank (W5H1953-BLK1) Chemical Oxygen Demand	ND	2.9	5.0	Prepared: mg/l	08/25/25	Analyze	d: 09/0)5/25			
LCS (W5H1953-BS1) Chemical Oxygen Demand	188	12	20	Prepared: mg/l	08/25/25 200	Analyze	d: 09/0 94	90-110			
LCS (W5H1953-BS2) Chemical Oxygen Demand	1960	12	20	Prepared:	08/25/25 2000	Analyze	d: 09/0 98	90-110			
Duplicate (W5H1953-DUP1) Chemical Oxygen Demand		5H21044 23	- 01 40	Prepared:	08/25/25	Analyze	d: 09/0)5/25	3	15	
Matrix Spike (W5H1953-MS1) Chemical Oxygen Demand	Source: 189	5H11028 12	- 01	Prepared: mg/l	08/25/25 200	Analyze	d: 09/0 94	90-110			
Matrix Spike (W5H1953-MS2) Chemical Oxygen Demand	Source: 2410	5H14002 12	- 02	Prepared: mg/l	08/25/25 2000	Analyze	d: 09/0 101				
Matrix Spike Dup (W5H1953-MSD1) Chemical Oxygen Demand	Source:	5H11028 12	- 01	Prepared: mg/l	08/25/25 200	Analyze ND		90-110	2	15	
Matrix Spike Dup (W5H1953-MSD2) Chemical Oxygen Demand		5H14002 12	- 02	Prepared:	08/25/25 2000	Analyze		90-110	5	15	
atch: W5H2188 - SM 2540D											
Blank (W5H2188-BLK1) Total Suspended Solids	ND	5	5	Prepa mg/l	ared & Ana	alyzed: 08	3/27/2	5			
LCS (W5H2188-BS1) Total Suspended Solids	62.2	5	5	Prepa mg/l	ared & Ana 65.1	alyzed: 08	3/27/2 ! 96	5 90-110			
Duplicate (W5H2188-DUP1)	Source:	5H15006	-01	Prepa	ared & Ana	alyzed: 08	3/27/2	5			
Total Suspended Solids	76.0	5	5	mg/l		68.7			10	10	

FINAL REPORT

La Puente Valley County Water P.O Box 3136; 112 N.First St. La Puente, CA 91744 **Project Number:** PVOU - LACSD Surcharge - Bi-Weekly

Reported:

09/11/2025 15:07

Source

Notes and Definitions

%REC	Percent Recovery
Dil	Dilution
MDL	Method Detection Limit
MRL	Method Reporting Limit (MRL) is the minimum levels, concentrations, or quantities of a target variable (e.g., target analyte) that can be reported with a specified degree of confidence. The MRL is also known as Limit of Quantitation (LOQ)
ND	NOT DETECTED at or above the Method Reporting Limit (MRL). If Method Detection Limit (MDL) is reported, then ND means not detected at or above the MDL.
RPD	Relative Percent Difference

Project Manager: Roy Frausto

Any remaining sample(s) will be disposed of one month from the final report date unless other arrangements are made in advance.

All results are expressed on wet weight basis unless otherwise specified.

Sample that was matrix spiked or duplicated.

All samples collected by Weck Laboratories have been sampled in accordance to laboratory SOP Number MIS002.

ATTACHMENT B

FINAL REPORT

Work Orders: 5G31008 **Report Date:** 9/11/2025

Received Date: 8/14/2025

Turnaround Time: Normal

Phones: (626) 330-2126

Fax: (626) 330-2679

P.O. #:

Billing Code:

Project: PVOU IZ - SCAQMD Quarterly

Attn: Cesar Ortiz

Client: La Puente Valley County Water

P.O Box 3136; 112 N.First St. La Puente, CA 91744

DoD-ELAP ANAB #ADE-2882 • DoD-ISO ANAB # • ELAP-CA #1132 • EPA-UCMR #CA00211 • LACSD #10143

This is a complete final report. The information in this report applies to the samples analyzed in accordance with the chain-of-custody document. Results are related only to the items tested. Weck Laboratories certifies that the test results meet all requirements of TNI unless noted by qualifiers or written in the Case Narrative. The report may include analytes that are not currently accreditable by some state agencies or accrediting bodies. This analytical report must be reproduced in its entirety.

Dear Cesar Ortiz,

Enclosed are the analytical results for the samples submitted under the attached Chain of Custody document. All analyses adhered to the method criteria, except where noted in the case narrative, sample condition checklist, and/or data qualifiers.

Reviewed by:

Kenneth C. Oda For Valerie I. Ayo

Project Manager

5G31008 Page 1 of 29

FINAL REPORT

La Puente Valley County Water P.O Box 3136; 112 N.First St. La Puente, CA 91744 **Project Number:** PVOU IZ - SCAQMD Quarterly

Reported: 09/11/2025 15:38

Project Manager: Cesar Ortiz

Sample Condition

Temperature	22.60	С	
COC present	~	COC completed properly	~
COC matches sample labels	V	Wet ice	
Blue ice	~	Sample(s) intact	~
Sample(s) using proper containers	~	Sample(s) have sufficient sample volume	~
Sample(s) received within hold time	~	Sample(s) labels have correct preservation	~
Sample(s) have acceptable pH	~	Sample(s) have acceptable Cl	~

Sample Summary

Sample Name	Sampled By	Lab ID	Matrix	Sampled	Qualifiers
SP-2360 (Influent of Decorbonator)	Santiago Loera	5G31008-01	Water	08/14/25 12:11	
SP-3001A (Effluent of Decorbonator)	Santiago Loera	5G31008-02	Water	08/14/25 12:17	

FINAL REPORT

La Puente Valley County Water P.O Box 3136; 112 N.First St. La Puente, CA 91744

Project Number: PVOU IZ - SCAQMD Quarterly

Reported: 09/11/2025 15:38

Project Manager: Cesar Ortiz

XX	Sample	Results
----	--------	---------

SP-2360 (Influent of Decorbonator) Sample:

Sampled: 08/14/25 12:11 by Santiago Loera

09/10/25

5G31008-01 (Water)

Analyte	Result	MDL	MRL	Units	Dil	Analyzed	Qualifier		
1,4-Dioxane by SPE/GCMS SIM, EPA Method 522									
Method: EPA 522			Instr: GCM	S20					
Batch ID: W5I0603	Preparation: EPA 522/SPE		Prepared: (09/09/25 07	:30		Analyst: ajc		
1,4-Dioxane	ND	0.028	0.070	ug/l	1	09/10/25			
Surrogate(s)									

93% Conc: 9.54

70-130

Chlorinated Acids Herbicides by GC/ECD

Method: EPA 515.4			Instr: GC08				
Batch ID: W5H1526	Preparation: EPA 515.4/Micro	Ext. Drtz	Prepared: 0	08/20/25 08	:43		Analyst: alf
2,4,5-T	ND	0.065	0.20	ug/l	1	08/21/25	
2,4,5-TP (Silvex)	ND	0.026	0.20	ug/l	1	08/21/25	
2,4-D	ND	0.14	0.40	ug/l	1	08/21/25	
2,4-DB	ND	0.19	2.0	ug/l	1	08/21/25	
3,5-Dichlorobenzoic acid	ND	0.12	1.0	ug/l	1	08/21/25	
Acifluorfen	ND	0.030	0.40	ug/l	1	08/21/25	
Bentazon	ND	0.23	2.0	ug/l	1	08/21/25	
Dalapon	ND	0.11	0.40	ug/l	1	08/21/25	
DCPA	ND	0.029	0.10	ug/l	1	08/21/25	
Dicamba	ND	0.15	0.60	ug/l	1	08/21/25	
Dichloroprop	ND	0.12	0.30	ug/l	1	08/21/25	
Dinoseb	ND	0.033	0.40	ug/l	1	08/21/25	
Pentachlorophenol	ND	0.014	0.20	ug/l	1	08/21/25	
Picloram	ND	0.050	0.60	ug/l	1	08/21/25	
Surrogate(s)							
2,4-DCAA		Conc: 10.2	70-130			08/21/25	

Hexavalent Chromium by IC, EPA Method 218.7

Method: EPA 218.7			Instr: LC13				
Batch ID: W5H2003	Preparation: _NONE (LC)		Prepared: 0	08/26/25 07:4	41		Analyst: cyr
Chromium 6+	0.077	0.0068	0.020	ug/l	1	08/26/25	

Metals by EPA 200 Series Methods

Method: EPA 200.8			Instr: ICPM	IS04			
Batch ID: W5H1647	Preparation: EPA 200.2		Prepared:	08/22/25 12	:14		Analyst: dak
Arsenic, Total	ND	0.10	0.50	ug/l	1	08/25/25	
Beryllium, Total	ND	0.023	0.10	ug/l	1	08/25/25	
Cadmium, Total	ND	0.21	0.50	ug/l	1	08/25/25	
Chromium, Total	0.63	0.62	2.0	ug/l	1	08/25/25	
Lead, Total	ND	0.10	0.20	ug/l	1	08/25/25	
Manganese, Total	0.22	0.13	1.0	ug/l	1	08/25/25	
5G31008							Page 3 of 29

14859 Clark Avenue, City of Industry CA, 91745 | Phone: (626) 336-2139

www.wecklabs.com

FINAL REPORT

La Puente Valley County Water P.O Box 3136; 112 N.First St. La Puente, CA 91744

5G31008

Project Number: PVOU IZ - SCAQMD Quarterly

Reported: 09/11/2025 15:38

Project Manager: Cesar Ortiz

5	Sample	Results
---	--------	---------

(Continued)

Page 4 of 29

Sampi	e Results							(Sommas)
Sample: SP-2360 (Influent of Decorbonator)				S	Sampled: 0	8/14/25	12:11 by Sa	antiago Loei
5G31	008-01 (Water)							(Continue
Analyte		Resul	t MDL	MRL	Units	Dil	Analyzed	Qualifi
letals by EPA 200	O Series Methods	(Continued)						
Method: EPA 200	0.8			Instr: ICPM	IS04			
Batch ID: W5H1		Preparation: EPA 200.2		Prepared:	08/22/25 12	2:14		Analyst: da
		NE		2.0	ug/l	1	08/25/25	
Selenium, Total		NE	0.13	0.50	ug/l	1	08/25/25	
litrosamines by G	GC/CI/MS/MS, EPA	. 521						
Method: EPA 521				Instr: GCM	S09			
Batch ID: W5H2	2121	Preparation: EPA 521/SPE		Prepared:	08/27/25 07	':40		Analyst: m
N-Nitrosodimethyl		NE	1.3	2.0	ng/l	1	08/30/25	
Surrogate(s)								
NDMA-d6		83%	6 Conc: 21.3	70-130			08/30/25	
emivolatile Orga	nic Compounds by	GC/MS						
Method: EPA 525	5.2			Instr: GCM	S16			
Batch ID: W5H1	1889	Preparation: EPA 525.2/SPE		Prepared:	08/25/25 07	':11		Analyst: rn
Benzo (a) pyrene		NE	0.045	0.10	ug/l	1	08/27/25	-
Bis(2-ethylhexyl)p	hthalate		0.41	3.0	ug/l	1	08/27/25	
Surrogate(s)								
1,3-Dimethyl-2-nit	trobenzene	94%	6 Conc: 4.46	70-130			08/27/25	
Perylene-d12		96%	6 Conc: 4.57	50-120			08/27/25	
Triphenyl phospha	ate		6 Conc: 5.13	70-130			08/27/25	
olatile Organic C	compounds by P&1	Γ and GC/MS						
Method: EPA 524	•			Instr: GCM	S14			
Batch ID: W5H1		Preparation: EPA 5030B			08/19/25 07	':25		Analyst: AD
1,1,1,2-Tetrachlor	oethane	NI	0.24	0.50	ug/l	1	08/20/25	,
1,1,1-Trichloroeth	ane	NE	0.076	0.50	ug/l	1	08/20/25	
1,1,2,2-Tetrachlor	oethane	NE	0.20	0.50	ug/l	1	08/20/25	
1,1,2-Trichloroeth	ane	NE	0.19	0.50	ug/l	1	08/20/25	
1,1-Dichloroethan	e	NE	0.12	0.50	ug/l	1	08/20/25	
1,1-Dichloroethen	e	NE	0.16	0.50	ug/l	1	08/20/25	
1,1-Dichloroprope	ene		0.14	0.50	ug/l	1	08/20/25	
		NE		0.50	ug/l	1	08/20/25	
1,2,4-Trichlorober		NE	0.17	0.50	ug/l	1	08/20/25	
		NE		0.50	ug/l	1	08/20/25	
•				0.50	ug/l	1	08/20/25	
•		NE		0.50	ug/l	1	08/20/25	
		NE		0.50	ug/l	1	08/20/25	
1,3-Dichloropropa		NI		0.50	ug/l	1	08/20/25	
		NE		0.50	•	1	08/20/25	
i,ə-ulcilloroprope	ilie, IUlai		,	0.50	ug/l	1	00/20/25	

Sampled: 08/14/25 12:11 by Santiago Loera

FINAL REPORT

La Puente Valley County Water P.O Box 3136; 112 N.First St. La Puente, CA 91744 **Project Number:** PVOU IZ - SCAQMD Quarterly

Reported: 09/11/2025 15:38

Project Manager: Cesar Ortiz

Sample: SP-2360 (Influent of Decorbonator)

(Continued)

5G31008-01 (Water)						(Continued)
Analyte	Result	MDL	MRL	Units	Dil	Analyzed	Qualifier
Volatile Organic Compounds by P&1	and GC/MS (Continued)						
Method: EPA 524.2			Instr: GCM				
Batch ID: W5H1390	Preparation: EPA 5030B		-	08/19/25 07			alyst: ADM
, , ,	ND	0.17	0.50	ug/l	1	08/20/25	
	ND	0.43	5.0	ug/l	1	08/20/25	
2-Chlorotoluene		0.15	0.50	ug/l	1	08/20/25	
2 1 10/10/10	ND	1.2	5.0	ug/l	1	08/20/25	
4-Chlorotoluene		0.15	0.50	ug/l	1	08/20/25	
4-Methyl-2-pentanone		1.4	5.0	ug/l	1	08/20/25	
	ND	0.15	0.50	ug/l	1	08/20/25	
2.0	ND	0.15	0.50	ug/l	1	08/20/25	
Bromochloromethane		0.15	0.50	ug/l	1	08/20/25	
Bromodichloromethane		0.090	0.50	ug/l	1	08/20/25	
	ND	0.14	0.50	ug/l	1	08/20/25	
2.0	ND	0.27	0.50	ug/l	1	08/20/25	
Carbon tetrachloride	ND	0.11	0.50	ug/l	1	08/20/25	
***************************************	ND	0.15	0.50	ug/l	1	08/20/25	
Chloroethane	ND	0.17	0.50	ug/l	1	08/20/25	
Chloroform	ND	0.10	0.50	ug/l	1	08/20/25	
÷	ND	0.23	0.50	ug/l	1	08/20/25	
cis-1,2-Dichloroethene	ND	0.12	0.50	ug/l	1	08/20/25	
cis-1,3-Dichloropropene		0.13	0.50	ug/l	1	08/20/25	
Dibromochloromethane	ND	0.20	0.50	ug/l	1	08/20/25	
Dibromomethane	ND	0.20	0.50	ug/l	1	08/20/25	
Dichlorodifluoromethane (Freon 12)	ND	0.15	0.50	ug/l	1	08/20/25	
Di-isopropyl ether	ND	1.1	2.0	ug/l	1	08/20/25	
Ethyl tert-butyl ether	ND	0.48	2.0	ug/l	1	08/20/25	
Ethylbenzene	ND	0.21	0.50	ug/l	1	08/20/25	
Freon 113	ND	1.1	5.0	ug/l	1	08/20/25	
Hexachlorobutadiene	ND	0.16	0.50	ug/l	1	08/20/25	
Isopropylbenzene	ND	0.18	0.50	ug/l	1	08/20/25	
m,p-Xylene	ND	0.33	0.50	ug/l	1	08/20/25	
m-Dichlorobenzene	ND	0.14	0.50	ug/l	1	08/20/25	
Methyl tert-butyl ether (MTBE)	ND	0.94	2.0	ug/l	1	08/20/25	
Methylene chloride	ND	0.30	0.50	ug/l	1	08/20/25	
Naphthalene		0.35	0.50	ug/l	1	08/20/25	
n-Butylbenzene	ND	0.29	0.50	ug/l	1	08/20/25	

FINAL REPORT

La Puente Valley County Water P.O Box 3136; 112 N.First St. La Puente, CA 91744 **Project Number:** PVOU IZ - SCAQMD Quarterly

Reported: 09/11/2025 15:38

Project Manager: Cesar Ortiz

Sample Results

(Continued)

/ NAME OF THE PROPERTY OF THE							
Sample: SP-2360 (Influent of De		S	Sampled: 08	8/14/25	12:11 by Sa	ntiago Loera	
5G31008-01 (Water)							(Continued)
Analyte	Result	MDL	MRL	Units	Dil	Analyzed	Qualifie
olatile Organic Compounds by P&T	and GC/MS (Continued)						
Method: EPA 524.2			Instr: GCM	S14			
Batch ID: W5H1390	Preparation: EPA 5030B		-	08/19/25 07	:25		Analyst: ADM
	ND	0.18	0.50	ug/l	1	08/20/25	
o-Dichlorobenzene		0.19	0.50	ug/l	1	08/20/25	
,		0.20	0.50	ug/l	1	08/20/25	
p-Dichlorobenzene		0.18	0.50	ug/l	1	08/20/25	
p-Isopropyltoluene		0.25	0.50	ug/l	1	08/20/25	
sec-Butylbenzene	ND	0.24	0.50	ug/l	1	08/20/25	
Styrene	ND	0.19	0.50	ug/l	1	08/20/25	
Tert-amyl methyl ether	ND	0.59	2.0	ug/l	1	08/20/25	
tert-Butylbenzene	ND	0.18	0.50	ug/l	1	08/20/25	
Tetrachloroethene	ND	0.18	0.50	ug/l	1	08/20/25	
THMs, Total	ND		0.50	ug/l	1	08/20/25	
Toluene	ND	0.29	0.50	ug/l	1	08/20/25	
trans-1,2-Dichloroethene	ND	0.13	0.50	ug/l	1	08/20/25	
trans-1,3-Dichloropropene	ND	0.14	0.50	ug/l	1	08/20/25	
Trichloroethene	ND	0.18	0.50	ug/l	1	08/20/25	
Trichlorofluoromethane	ND	0.18	0.50	ug/l	1	08/20/25	
Vinyl chloride	ND	0.18	0.50	ug/l	1	08/20/25	
Xylenes, Total	ND		0.50	ug/l	1	08/20/25	
Gurrogate(s)							
1,2-Dichlorobenzene-d4	97%	Conc: 48.5	70-130			08/20/25	
4-Bromofluorobenzene	92%	Conc: 46.1	70-130			08/20/25	
Sample Results							(Continued)
Sample: SP-2360 (Influent of De	ecorbonator)		(Sampled: 0	8/14/25	12·11 by Sa	ntiago Loera

Sample: SP-2360 (Influent of Decorbonator)

Sampled: 08/14/25 12:11 by Santiago Loera

08/30/25

5G31008-01RE1 (Water)

Fluoride, Total

Analyte Result MDL MRL Units Dil Analyzed Qualifier

Anions by IC, EPA Method 300.0

Method: EPA 300.0

Batch ID: W5H2379

Preparation: _NONE (LC)

Prepared: 08/29/25 16:06

Analyst: CAM

0.022

0.10

mg/l

0.047

5G31008 Page 6 of 29

FINAL REPORT

La Puente Valley County Water P.O Box 3136; 112 N.First St. La Puente, CA 91744

Lead, Total

5G31008

Manganese, Total

Project Number: PVOU IZ - SCAQMD Quarterly

Reported: 09/11/2025 15:38

Project Manager: Cesar Ortiz

Sa	mple Results							(Continued)
Sample:	SP-3001A (Effluent o	f Decorbonator)		S	Sampled: 0	8/14/25	12:17 by Sa	ntiago Loera
	5G31008-02 (Water)							
Analyte		Result	MDL	MRL	Units	Dil	Analyzed	Qualifier
1,4-Dioxan	e by SPE/GCMS SIM, EP	A Method 522						
Method:	EPA 522			Instr: GCM	S20			
Batch ID	: W5I0603	Preparation: EPA 522/SPE		Prepared:	09/09/25 07	:30		Analyst: ajc
1,4-Dioxa	ne	ND	0.028	0.070	ug/l	1	09/10/25	
Surrogate(s))							
1,4-Dioxa	ne-d8	83%	Conc: 8.24	70-130			09/10/25	
Chlorinated	d Acids Herbicides by G	C/ECD						
Method:	EPA 515.4			Instr: GC08	}			
	: W5H1526	Preparation: EPA 515.4/Micro		-	08/20/25 08	:43		Analyst: alf
		ND	0.065	0.20	ug/l	1	08/21/25	
	•	ND	0.026	0.20	ug/l	1	08/21/25	
•			0.14	0.40	ug/l	1	08/21/25	
2,4-DB		ND	0.19	2.0	ug/l	1	08/21/25	
3,5-Dichlo	orobenzoic acid	ND	0.12	1.0	ug/l	1	08/21/25	
Acifluorfer	n	ND	0.030	0.40	ug/l	1	08/21/25	
Bentazon		ND	0.23	2.0	ug/l	1	08/21/25	
Dalapon			0.11	0.40	ug/l	1	08/21/25	
DCPA		ND	0.029	0.10	ug/l	1	08/21/25	
Dicamba		ND	0.15	0.60	ug/l	1	08/21/25	
Dichloropi	rop	ND	0.12	0.30	ug/l	1	08/21/25	
Dinoseb		ND	0.033	0.40	ug/l	1	08/21/25	
Pentachlo	rophenol	ND	0.014	0.20	ug/l	1	08/21/25	
Picloram		ND	0.050	0.60	ug/l	1	08/21/25	
Surrogate(s)								
2,4-DCAA			Conc: 10.2	70-130			08/21/25	
Hexavalent	Chromium by IC, EPA	Method 218.7						
Method:	EPA 218.7			Instr: LC13				
Batch ID	: W5H2003	Preparation: _NONE (LC)			08/26/25 07	:41		Analyst: cyr
Chromiur	m 6+	0.079	0.0068	0.020	ug/l	1	08/26/25	
Metals by E	PA 200 Series Methods							
Method:	EPA 200.8			Instr: ICPM	S04			
	: W5H1647	Preparation: EPA 200.2		Prepared:	08/22/25 12	:14		Analyst: dak
•		ND	0.10	0.50	ug/l	1	08/25/25	
Beryllium,	Total	ND	0.023	0.10	ug/l	1	08/25/25	
Cadmium	, Total	ND	0.21	0.50	ug/l	1	08/25/25	
Chromiur	m, Total	0.76	0.62	2.0	ug/l	1	08/25/25	

0.10

0.13

0.20

1.0

ug/l

ug/l

08/25/25

08/25/25

Page 7 of 29

FINAL REPORT

La Puente Valley County Water P.O Box 3136; 112 N.First St. La Puente, CA 91744

5G31008

Project Number: PVOU IZ - SCAQMD Quarterly

Reported:

(Continued)

Page 8 of 29

09/11/2025 15:38

XX	Sample	Results
----	--------	---------

Project Manager: Cesar Ortiz

Sample:	SP-3001A (Effluent of	of Decorbonator)		9	Sampled: 08/14/25 12:17 by Santiago Loe				
	5G31008-02 (Water)							(Continued)	
Analyte	,	Result	MDL	MRL	Units	Dil	Analyzed	Qualifie	
Metals by E	PA 200 Series Method	s (Continued)							
Method: E	EPA 200.8			Instr: ICPM	S04				
Batch ID	: W5H1647	Preparation: EPA 200.2		Prepared:	08/22/25 12	:14		Analyst: dak	
Nickel, Tot		ND	0.28	2.0	ug/l	1	08/25/25		
Selenium,	Total	ND	0.13	0.50	ug/l	1	08/25/25		
Nitrosamin	es by GC/CI/MS/MS, E	PA 521							
Method: E	EPA 521			Instr: GCM	S09				
Batch ID	: W5H2121	Preparation: EPA 521/SPE		Prepared:	08/27/25 07	':40		Analyst: mld	
N-Nitrosoc	dimethylamine.	ND	1.3	2.0	ng/l	1	08/30/25		
Surrogate(s)			_						
NDMA-d6		80%	Conc: 20.4	70-130			08/30/25		
emivolatil	e Organic Compounds	by GC/MS							
Method: E	EPA 525.2			Instr: GCM	S16				
Batch ID	: W5H1889	Preparation: EPA 525.2/SPE			08/25/25 07	:11		Analyst: rmr	
Benzo (a)	• •	ND	0.045	0.10	ug/l	1	08/27/25		
Bis(2-ethy	/lhexyl)phthalate	ND	0.41	3.0	ug/l	1	08/27/25		
Surrogate(s)									
	•	92%		70-130			08/27/25		
Perylene-		92%		50-120			08/27/25		
Triphenyl	phosphate	101%	Conc: 4.83	70-130			08/27/25		
/olatile Orç	ganic Compounds by P	&T and GC/MS							
Method: E	EPA 524.2			Instr: GCM	S14				
	: W5H1390	Preparation: EPA 5030B		Prepared:	08/19/25 07	:25	1	Analyst: ADM	
		ND	0.24	0.50	ug/l	1	08/20/25		
		ND	0.076	0.50	ug/l	1	08/20/25		
		ND	0.20	0.50	ug/l	1	08/20/25		
1,1,2-Trich	hloroethane	ND	0.19	0.50	ug/l	1	08/20/25		
1,1-Dichlo	proethane		0.12	0.50	ug/l	1	08/20/25		
1,1-Dichlo	proethene		0.16	0.50	ug/l	1	08/20/25		
1,1-Dichlo	propropene	ND	0.14	0.50	ug/l	1	08/20/25		
1,2,3-Trich	hlorobenzene	ND	0.40	0.50	ug/l	1	08/20/25		
1,2,4-Trich	nlorobenzene	ND	0.17	0.50	ug/l	1	08/20/25		
1,2,4-Trim	nethylbenzene	ND	0.20	0.50	ug/l	1	08/20/25		
1,2-Dichlo	proethane	ND	0.12	0.50	ug/l	1	08/20/25		
1,2-Dichlo	propropane	ND	0.13	0.50	ug/l	1	08/20/25		
1,3,5-Trim	nethylbenzene	ND	0.17	0.50	ug/l	1	08/20/25		
1,3-Dichlo	oropropane	ND	0.072	0.50	ug/l	1	08/20/25		
1,3-Dichlo	propropene. Total	ND		0.50	ug/l	1	08/20/25		

FINAL REPORT

La Puente Valley County Water P.O Box 3136; 112 N.First St. La Puente, CA 91744 **Project Number:** PVOU IZ - SCAQMD Quarterly

Reported: 09/11/2025 15:38

Project Manager: Cesar Ortiz

(Continued)

Sample: SP-3001A (Effluent of Decorbonator)

Sampled: 08/14/25 12:17 by Santiago Loera

5G31008-02 (Water)						(Continued
Analyte	Result	MDL	MRL	Units	Dil	Analyzed	Qualifie
olatile Organic Compounds by P	&T and GC/MS (Continued)						
Method: EPA 524.2			Instr: GCM	S14			
Batch ID: W5H1390	Preparation: EPA 5030B		-	08/19/25 07			alyst: ADM
2,2-Dichloropropane		0.17	0.50	ug/l	1	08/20/25	
	ND	0.43	5.0	ug/l	1	08/20/25	
2-Chlorotoluene	ND	0.15	0.50	ug/l	1	08/20/25	
2-Hexanone	ND	1.2	5.0	ug/l	1	08/20/25	
. •	ND	0.15	0.50	ug/l	1	08/20/25	
4-Methyl-2-pentanone	ND	1.4	5.0	ug/l	1	08/20/25	
Benzene	ND	0.15	0.50	ug/l	1	08/20/25	
Bromobenzene		0.15	0.50	ug/l	1	08/20/25	
Bromochloromethane		0.15	0.50	ug/l	1	08/20/25	
Bromodichloromethane		0.090	0.50	ug/l	1	08/20/25	
Bromoform	ND	0.14	0.50	ug/l	1	08/20/25	
Bromomethane	ND	0.27	0.50	ug/l	1	08/20/25	
Carbon tetrachloride	ND	0.11	0.50	ug/l	1	08/20/25	
Chlorobenzene	ND	0.15	0.50	ug/l	1	08/20/25	
Chloroethane	ND	0.17	0.50	ug/l	1	08/20/25	
Chloroform	ND	0.10	0.50	ug/l	1	08/20/25	
Chloromethane	ND	0.23	0.50	ug/l	1	08/20/25	
cis-1,2-Dichloroethene	ND	0.12	0.50	ug/l	1	08/20/25	
cis-1,3-Dichloropropene	ND	0.13	0.50	ug/l	1	08/20/25	
Dibromochloromethane	ND	0.20	0.50	ug/l	1	08/20/25	
Dibromomethane.	ND	0.20	0.50	ug/l	1	08/20/25	
Dichlorodifluoromethane (Freon 12)	ND	0.15	0.50	ug/l	1	08/20/25	
Di-isopropyl ether	ND	1.1	2.0	ug/l	1	08/20/25	
Ethyl tert-butyl ether		0.48	2.0	ug/l	1	08/20/25	
Ethylbenzene	ND	0.21	0.50	ug/l	1	08/20/25	
Freon 113	ND	1.1	5.0	ug/l	1	08/20/25	
Hexachlorobutadiene	ND	0.16	0.50	ug/l	1	08/20/25	
Isopropylbenzene	ND	0.18	0.50	ug/l	1	08/20/25	
	ND	0.33	0.50	ug/l	1	08/20/25	
m-Dichlorobenzene		0.14	0.50	ug/l	1	08/20/25	
Methyl tert-butyl ether (MTBE)		0.94	2.0	ug/l	1	08/20/25	
	ND	0.30	0.50	ug/l	1	08/20/25	
,	ND	0.35	0.50	ug/l	1	08/20/25	
n-Butylbenzene		0.33	0.50	ug/l	1	08/20/25	

Sampled: 08/14/25 12:17 by Santiago Loera

FINAL REPORT

La Puente Valley County Water P.O Box 3136; 112 N.First St. La Puente, CA 91744 **Project Number:** PVOU IZ - SCAQMD Quarterly

Reported: 09/11/2025 15:38

Project Manager: Cesar Ortiz

Sample Results

Sample: SP-3001A (Effluent of Decorbonator)

(Continued)

5G31008-02 (Wa	ter)					((Continued
Analyte	Result	MDL	MRL	Units	Dil	Analyzed	Qualifie
olatile Organic Compounds b	y P&T and GC/MS (Continued)						
Method: EPA 524.2			Instr: GCMS				
Batch ID: W5H1390	Preparation: EPA 5030B		Prepared: (alyst: ADM
.,	ND	0.18	0.50	ug/l	1	08/20/25	
0 2 10 1110 1 92 0 112 0 110	ND	0.19	0.50	ug/l	1	08/20/25	
	ND	0.20	0.50	ug/l	1	08/20/25	
p-Dichlorobenzene	ND	0.18	0.50	ug/l	1	08/20/25	
p-Isopropyltoluene	ND	0.25	0.50	ug/l	1	08/20/25	
sec-Butylbenzene	ND	0.24	0.50	ug/l	1	08/20/25	
Styrene	ND	0.19	0.50	ug/l	1	08/20/25	
Tert-amyl methyl ether	ND	0.59	2.0	ug/l	1	08/20/25	
tert-Butylbenzene	ND	0.18	0.50	ug/l	1	08/20/25	
Tetrachloroethene	ND	0.18	0.50	ug/l	1	08/20/25	
THMs, Total	ND		0.50	ug/l	1	08/20/25	
Toluene	ND	0.29	0.50	ug/l	1	08/20/25	
trans-1,2-Dichloroethene	ND	0.13	0.50	ug/l	1	08/20/25	
trans-1,3-Dichloropropene	ND	0.14	0.50	ug/l	1	08/20/25	
Trichloroethene	ND	0.18	0.50	ug/l	1	08/20/25	
Trichlorofluoromethane	ND	0.18	0.50	ug/l	1	08/20/25	
Vinyl chloride	ND	0.18	0.50	ug/l	1	08/20/25	
Xylenes, Total	ND		0.50	ug/l	1	08/20/25	
urrogate(s) 1.2-Dichlorobenzene-d4	97%	Conc: 48.5	70-130			08/20/25	
-,	••••	Conc: 46.1	70-130			08/20/25	
T-DIOMONODENZENE	92/0	JUIIU. 70. I	70-130				Continue

Sample Results

(Continued)

Analyst: CAM

Sample: SP-3001A (Effluent of Decorbonator)

Sampled: 08/14/25 12:17 by Santiago Loera

5G31008-02RE1 (Water)

Analyte Result MDL MRL Units Dil Analyzed Qualifier
Anions by IC, EPA Method 300.0

Method: EPA 300.0

Instr: LC12

Batch ID: W5H2379 Preparation: _NONE (LC) Prepared: 08/29/25 16:06

Fluoride, Total 0.047 0.022 0.10 mg/l 1 08/30/25

5G31008 Page 10 of 29

FINAL REPORT

La Puente Valley County Water P.O Box 3136; 112 N.First St. La Puente, CA 91744

Project Number: PVOU IZ - SCAQMD Quarterly

Reported: 09/11/2025 15:38

Project Manager: Cesar Ortiz

QL	Qu
----	----

La Puente, CA 91744	I	Project Ma	nager:	Cesar Ortiz							
Quality Control Resul	lts										
1,4-Dioxane by SPE/GCMS SIM, EPA Me	thod 522	2									
Analyte	Result	MDL	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
Batch: W5I0603 - EPA 522											
Blank (W5I0603-BLK1)				Prepared:	09/09/25	Analyze	d: 09/1	0/25			
1,4-Dioxane		0.028	0.070	ug/l							
Surrogate(s) 1,4-Dioxane-d8				ug/l	10.0		97	70-130			
LCS (W5I0603-BS1)				Prepared:		Analyze					
1,4-Dioxane	0.220	0.028	0.070	ug/l	0.200		110	70-130			
Surrogate(s) 1,4-Dioxane-d8	9.73			ug/l	10.0		97	70-130			
LCS Dup (W5I0603-BSD1)				Prepared:	09/09/25	Analyze					
1,4-Dioxane		0.028	0.070	ug/l	0.200		105	70-130	5	30	
Surrogate(s) 1,4-Dioxane-d8	9.21			ug/l	10.0		92	70-130			
Quality Control Resul	lts										
Anions by IC, EPA Method 300.0											
	5 1.				Spike	Source	0/056	%REC		RPD	0 II.C
Analyte Batch: W5H1887 - EPA 300.0	Result	MDL	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
				Droparode	00/24/25	Analyzo	4. UO /3)E /2E			
Blank (W5H1887-BLK1) Fluoride, Total	ND	0.022	0.10	Prepared: mg/l	00/24/23	Allalyze	u. 00/2	3/23			
LCS (W5H1887-BS1)				Prepared:	08/24/25	Analyze	4· 08/2	5/25			
Fluoride, Total	1.91	0.022	0.10	mg/l	2.00	Allulyze		90-110			
Matrix Spike (W5H1887-MS1)		5H13097	-02	Prepared:	08/24/25	Analyze	d: 08/2	26/25			
Fluoride, Total	- 2.83	0.022	0.10	mg/l	2.00		142	86-107			MS-01
Matrix Spike (W5H1887-MS2)	Source	5H20071	-04	Prepared:	08/24/25	Analyze	d: 08/2	6/25			
			0.16			A =					
Fluoride, Total			0.10	mg/l	2.00	0.748		86-107			
	2.83 Source:				2.00		104 d: 08/2	86-107	0.1	20	MS-01

Batch:	W5H2379	-	EPA	300.0

LCS (W5H2379-BS1)

Fluoride, Total

5G31008

Fluoride, Total

Matrix Spike Dup (W5H1887-MSD2)

Matrix Spike Dup (W5H2379-MSD1)

Blank (W5H2379-BLK1) ND 0.022 0.10 Fluoride, Total mg/l

Fluoride, Total 1.94 0.022 0.10 Matrix Spike (W5H2379-MS1) Source: 5D21007-04 Fluoride, Total 20.8 0.22 Matrix Spike (W5H2379-MS2)

Source: 5F30006-04RE1 21.2 0.22 10 Source: 5D21007-04

Source: 5H20071-04

0.022

Prepared & Analyzed: 08/29/25

Prepared: 08/24/25 Analyzed: 08/26/25

0.748

106 86-107

2.00

Prepared & Analyzed: 08/29/25

Prepared: 08/29/25 Analyzed: 08/30/25 mg/l 20.0 0.758 100 86-107

Prepared: 08/29/25 Analyzed: 08/30/25 0.950 101 86-107 mg/l 20.0

Prepared: 08/29/25 Analyzed: 08/30/25

Page 11 of 29

20

mg/l

FINAL REPORT

La Puente Valley County Water P.O Box 3136; 112 N.First St. La Puente, CA 91744 **Project Number:** PVOU IZ - SCAQMD Quarterly

Reported:

09/11/2025 15:38

Project Manager: Cesar Ortiz

	1			
- 3			b	(
			7	

Quality Control Results

Anions by IC, EPA Method 300.0 (Conti	inued)										
					Spike	Source		%REC		RPD	
Analyte	Result	MDL	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
Batch: W5H2379 - EPA 300.0 (Continued)											
Matrix Spike Dup (W5H2379-MSD1)	Source:	5D21007	7-04	Prepared	d: 08/29/25	Analyze	ed: 08/3	30/25			
Matrix Spike Dup (W5H2379-MSD1) Fluoride, Total		5 D2100 7 0.22	7-04 1.0	Prepared mg/l	d: 08/29/25 20.0	Analyze 0.758	ed: 08/ 3 103	80/25 86-107	3	20	
	21.3		1.0	mg/l		0.758	103	86-107	3	20	

FINAL REPORT

La Puente Valley County Water P.O Box 3136; 112 N.First St. La Puente, CA 91744

Project Number: PVOU IZ - SCAQMD Quarterly

Project Manager: Cesar Ortiz

Reported:

09/11/2025 15:38

5G31008

Quality Control Deculto

(Continued)

Page 13 of 29

- ND	0.065 0.026 0.14 0.19 0.12 0.030 0.23	0.20 0.20 0.40 2.0 1.0	Units Prepare ug/I ug/I ug/I	Spike Level d: 08/20/25	Source Result Analyze		%REC Limits	RPD	RPD Limit	Qualifie
- ND	0.065 0.026 0.14 0.19 0.12 0.030	0.20 0.20 0.40 2.0	Prepare ug/l ug/l	Level				RPD	Limit	Qualifie
- ND	0.026 0.14 0.19 0.12 0.030	0.20 0.40 2.0	ug/l ug/l	d: 08/20/25	Analyze	d: 08/2	1/25			
- ND	0.026 0.14 0.19 0.12 0.030	0.20 0.40 2.0	ug/l ug/l	d: 08/20/25	Analyze	d: 08/2	1/25			
- ND	0.026 0.14 0.19 0.12 0.030	0.20 0.40 2.0	ug/l							
- ND	0.14 0.19 0.12 0.030	0.40 2.0	•							
IND IND IND IND IND IND	0.19 0.12 0.030	2.0	ug/l							
- ND - ND - ND	0.12 0.030									
- ND - ND - ND	0.030	1.0	ug/l							
- ND - ND			ug/l							
- ND	0.33	0.40	ug/l							
	0.23	2.0	ug/l							
- ND	0.11	0.40	ug/l							
	0.029	0.10	ug/l							
- ND	0.15	0.60	ug/l							
- ND	0.12	0.30	ug/l							
- ND	0.033	0.40	ug/l							
- ND	0.014	0.20	ug/l							
- ND	0.050	0.60	ug/l							
10.3			ug/l	10.0		103	70-130			
			Prepare	d: 08/20/25	Analyze	d: 08/2	1/25			
5.25	0.065	0.20	ug/l	5.00		105	70-130			
5.32	0.026	0.20	ug/l	5.00		106	70-130			
10.6	0.14	0.40	ug/l	10.0		106	70-130			
23.4	0.19	2.0	ug/l	20.0		117	70-130			
10.4	0.12	1.0	ug/l	10.0		104	70-130			
5.40	0.030	0.40	ug/l	5.00		108	70-130			
21.1	0.23	2.0	ug/l	20.0		106	70-130			
10.1	0.11	0.40	ug/l	10.0		101	70-130			
5.42	0.029	0.10	ug/l	5.00		108	70-130			
10.5	0.15	0.60	ug/l	10.0		105	70-130			
10.5	0.12	0.30	ug/l	10.0		105	70-130			
5.57	0.033	0.40	ug/l	5.00		111	70-130			
5.71	0.014	0.20	ug/l	5.00		114	70-130			
4.61	0.050	0.60	ug/l	5.00		92	70-130			
9.92			ug/l	10.0		99	70-130			
ource:	5G3100	8-02	Prepare	d: 08/20/25	Analyze	d: 08/2	1/25			
5.21	0.065	0.20	ug/l	5.00	ND	104	70-130			
5.25	0.026	0.20	ug/l	5.00	ND	105	70-130			
10.5	0.14	0.40	116./1							
10.5			ug/l	10.0	ND	105	70-130			
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5.32 10.6 23.4 10.4 5.40 21.1 10.1 5.42 10.5 5.57 5.71 4.61	5.32 0.026 10.6 0.14 23.4 0.19 10.4 0.12 5.40 0.030 21.1 0.23 10.1 0.11 5.42 0.029 10.5 0.15 10.5 0.12 5.57 0.033 5.71 0.014 4.61 0.050 9.92 surce: 5G3100 5.25 0.026	5.32 0.026 0.20 10.6 0.14 0.40 23.4 0.19 2.0 10.4 0.12 1.0 5.40 0.030 0.40 21.1 0.23 2.0 10.1 0.11 0.40 5.42 0.029 0.10 10.5 0.15 0.60 10.5 0.12 0.30 5.57 0.033 0.40 5.71 0.014 0.20 4.61 0.050 0.60 9.92 Surce: 5G31008-02 5.21 0.065 0.20 5.25 0.026 0.20	5.32 0.026 0.20 ug/l 10.6 0.14 0.40 ug/l 23.4 0.19 2.0 ug/l 10.4 0.12 1.0 ug/l 5.40 0.030 0.40 ug/l 21.1 0.23 2.0 ug/l 10.1 0.11 0.40 ug/l 5.42 0.029 0.10 ug/l 10.5 0.15 0.60 ug/l 10.5 0.12 0.30 ug/l 5.57 0.033 0.40 ug/l 5.57 0.033 0.40 ug/l 4.61 0.050 0.60 ug/l 9.92 ug/l surce: 5G31008-02 Prepare 10.5 0.20 ug/l 10.5 0.20 ug/l	5.32 0.026 0.20 ug/l 5.00 10.6 0.14 0.40 ug/l 10.0 23.4 0.19 2.0 ug/l 20.0 10.4 0.12 1.0 ug/l 10.0 5.40 0.030 0.40 ug/l 5.00 21.1 0.23 2.0 ug/l 20.0 10.1 0.11 0.40 ug/l 10.0 5.42 0.029 0.10 ug/l 5.00 10.5 0.15 0.60 ug/l 10.0 10.5 0.12 0.30 ug/l 10.0 5.57 0.033 0.40 ug/l 5.00 5.71 0.014 0.20 ug/l 5.00 9.92 ug/l 5.00 10.0 0.50 0.60 ug/l 5.00 10.0 0.50 0.60 ug/l 5.00 10.5 0.15 0.00 ug/l 5.00 10.5 0.000 0.60 ug/l 5.00 10.5 0.000 0.60 ug/l 5.00 10.5 0.000 0.00 ug/l 5.00 10.0 0.000 0.00 ug/l 5.00 10.0 0.000 0.000 ug/l 5.00 10.0 0.000 0.000 ug/l 5.00	5.32 0.026 0.20 ug/l 5.00 10.6 0.14 0.40 ug/l 10.0 23.4 0.19 2.0 ug/l 20.0 10.4 0.12 1.0 ug/l 10.0 5.40 0.030 0.40 ug/l 5.00 21.1 0.23 2.0 ug/l 20.0 10.1 0.11 0.40 ug/l 10.0 5.42 0.029 0.10 ug/l 5.00 10.5 0.15 0.60 ug/l 10.0 10.5 0.12 0.30 ug/l 10.0 5.57 0.033 0.40 ug/l 5.00 5.71 0.014 0.20 ug/l 5.00 4.61 0.050 0.60 ug/l 5.00 9.92 ug/l 5.00 pug/l 5.00	5.32 0.026 0.20 ug/l 5.00 106 10.6 0.14 0.40 ug/l 10.0 106 23.4 0.19 2.0 ug/l 20.0 117 10.4 0.12 1.0 ug/l 10.0 104 5.40 0.030 0.40 ug/l 5.00 108 21.1 0.23 2.0 ug/l 20.0 106 10.1 0.11 0.40 ug/l 10.0 101 5.42 0.029 0.10 ug/l 5.00 108 10.5 0.15 0.60 ug/l 10.0 105 10.5 0.12 0.30 ug/l 10.0 105 5.57 0.033 0.40 ug/l 5.00 111 5.71 0.014 0.20 ug/l 5.00 114 4.61 0.050 0.60 ug/l 5.00 92 Surce: 5G31008-02 Prepared: 08/20/25 Analyzed: 08/2 5.21 0.065 0.20 ug/l 5.00 ND 105 5.25 0.026 0.20 ug/l 5.00 ND 105	5.32 0.026 0.20 ug/l 5.00 106 70-130 10.6 0.14 0.40 ug/l 10.0 106 70-130 23.4 0.19 2.0 ug/l 20.0 117 70-130 10.4 0.12 1.0 ug/l 10.0 104 70-130 5.40 0.030 0.40 ug/l 5.00 108 70-130 21.1 0.23 2.0 ug/l 20.0 106 70-130 10.1 0.11 0.40 ug/l 10.0 101 70-130 10.5 0.12 0.029 0.10 ug/l 5.00 108 70-130 10.5 0.15 0.60 ug/l 10.0 105 70-130 10.5 0.12 0.30 ug/l 10.0 105 70-130 5.57 0.033 0.40 ug/l 5.00 114 70-130 5.71 0.014 0.20 ug/l 5.00 92 70-130 99.92 ug/l 10.0 99	5.32 0.026 0.20 ug/l 5.00 106 70-130 10.6 0.14 0.40 ug/l 10.0 106 70-130 10.4 0.19 2.0 ug/l 20.0 117 70-130 10.4 0.12 1.0 ug/l 10.0 104 70-130 10.4 0.00 108 70-130 10.4 0.00 108 70-130 10.1 0.23 2.0 ug/l 20.0 106 70-130 10.1 0.21 0.23 2.0 ug/l 20.0 106 70-130 10.1 0.11 0.40 ug/l 10.0 101 70-130 10.5 0.15 0.60 ug/l 5.00 108 70-130 10.5 0.12 0.30 ug/l 10.0 105 70-130 10.5 0.12 0.30 ug/l 10.0 105 70-130 10.5 0.12 0.30 ug/l 10.0 105 70-130 10.5 0.12 0.30 ug/l 5.00 111 70-130 10.5 0.12 0.30 ug/l 5.00 111 70-130 10.5 0.12 0.30 ug/l 5.00 111 70-130 10.5 0.11 0.014 0.20 ug/l 5.00 111 70-130 10.5 0.11 0.014 0.20 ug/l 5.00 114 70-130 10.5 0.10 0.050 0.60 ug/l 5.00 92 70-130 10.5 0.050 0.60 ug/l 5.00 92 70-130 10.5 0.050 0.60 ug/l 5.00 92 70-130 10.5 0.050 0.60 ug/l 5.00 ND 104 70-130 10.5 0.050 0.20 ug/l 5.00 ND 104 70-130 10.5 0.050 ND 104 70-130	5.32 0.026 0.20 ug/l 5.00 106 70-130 10.6 0.14 0.40 ug/l 10.0 106 70-130 10.4 0.19 2.0 ug/l 20.0 117 70-130 10.4 0.12 1.0 ug/l 10.0 104 70-130 10.4 0.030 0.40 ug/l 20.0 108 70-130 10.1 0.23 2.0 ug/l 20.0 106 70-130 10.1 0.11 0.40 ug/l 10.0 101 70-130 10.1 0.11 0.40 ug/l 10.0 101 70-130 10.5 0.15 0.60 ug/l 10.0 105 70-130 10.5 0.12 0.30 ug/l 5.00 111 70-130 10.5 0.11 0.014 0.20 ug/l 5.00 114 70-130 10.5 0.014 0.20 ug/l 5.00 114 70-130 10.5 0.00 0.60 ug/l 5.00 114 70-130 10.5 0.050 0.60 ug/l 5.00 10.0 10.0 10.0 10.0 10.0 10.0 10.0

FINAL REPORT

La Puente Valley County Water P.O Box 3136; 112 N.First St. La Puente, CA 91744 **Project Number:** PVOU IZ - SCAQMD Quarterly

Reported: 09/11/2025 15:38

Project Manager: Cesar Ortiz

Quality Control Results

Chlorinated Acids Herbicides by GC/E	CD (Conti	nued)									
					Spike	Source	0/556	%REC		RPD	
Analyte	Result	MDL	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifie
Batch: W5H1526 - EPA 515.4 (Continue	-										
Matrix Spike (W5H1526-MS1) Acifluorfen		: 5G310 0	08-02 0.40	Prepare ug/l	d: 08/20/2 ! 5.00	5 Analyze ND	e d: 08/2 106	21/25 70-130			
Bentazon		0.030	2.0	ug/l ug/l	20.0	ND	104	70-130			
Dalapon		0.23	0.40	Ū	10.0	ND	98	70-130			
•				ug/l				70-130			
DCPA Dicamba		0.029 0.15	0.10 0.60	ug/l	5.00 10.0	ND ND	106 104	70-130			
Dichloroprop				ug/l							
		0.12	0.30	ug/l	10.0	ND	103	70-130			
		0.033	0.40	ug/l	5.00	ND	110	70-130			
Pentachlorophenol		0.014	0.20	ug/l	5.00	ND	111	70-130			
Picloram Surrogate(s)		0.050	0.60	ug/l	5.00	ND	91	70-130			
Surrogate(s) 2,4-DCAA	10.5			ug/l	10.0		105	70-130			
Matrix Spike Dup (W5H1526-MSD1)	Source	: 5G310	08-02	Prepare	d: 08/20/2	5 Analyze	d: 08/2	21/25			
2,4,5-T		0.065	0.20	ug/l	5.00	ND	105	70-130	0.6	30	
2,4,5-TP (Silvex)		0.026	0.20	ug/l	5.00	ND	106	70-130	1	30	
2,4-D	10.6	0.14	0.40	ug/l	10.0	ND	106	70-130	1	30	
2,4-DB	23.2	0.19	2.0	ug/l	20.0	ND	116	70-130	1	30	
3,5-Dichlorobenzoic acid	10.9	0.12	1.0	ug/l	10.0	ND	109	70-130	3	30	
Acifluorfen	5.50	0.030	0.40	ug/l	5.00	ND	110	70-130	3	30	
Bentazon	21.9	0.23	2.0	ug/l	20.0	ND	110	70-130	5	30	
Dalapon	10.8	0.11	0.40	ug/l	10.0	ND	108	70-130	10	30	
DCPA .	5.43	0.029	0.10	ug/l	5.00	ND	109	70-130	2	30	
Dicamba	10.4	0.15	0.60	ug/l	10.0	ND	104	70-130	0.03	30	
Dichloroprop	10.5	0.12	0.30	ug/l	10.0	ND	105	70-130	1	30	
Dinoseb	5.71	0.033	0.40	ug/l	5.00	ND	114	70-130	3	30	
Pentachlorophenol	5.59	0.014	0.20	ug/l	5.00	ND	112	70-130	0.4	30	
Picloram	4.68	0.050	0.60	ug/l	5.00	ND	94	70-130	3	30	
Surrogate(s)											

FINAL REPORT

La Puente Valley County Water P.O Box 3136; 112 N.First St. La Puente, CA 91744 **Project Number:** PVOU IZ - SCAQMD Quarterly

Reported:

09/11/2025 15:38

Quality Control Results

(Continued)

J A /AN											
Hexavalent Chromium by IC, EPA Met	nod 218.7										
					Spike	Source		%REC		RPD	
Analyte	Result	MDL	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
Batch: W5H2003 - EPA 218.7											
Blank (W5H2003-BLK1)				Prep	ared & Ai	nalyzed: 0	8/26/2	5			
Chromium 6+	ND	0.0068	0.020	ug/l							
LCS (W5H2003-BS1)				Prep	ared & Aı	nalyzed: 0	8/26/2	5			
Chromium 6+	4.93	0.0068	0.020	ug/l	5.00		99	50-150			
Matrix Spike (W5H2003-MS1)	Source	: 5G2302	1-01	Prep	ared & Aı	nalyzed: 0	8/26/2	5			
Chromium 6+	9.28	0.0068	0.020	ug/l	5.00	4.19	102	50-150			
Matrix Spike (W5H2003-MS2)	Source	: 5G2302	1-02	Prep	ared & Aı	nalyzed: 0	8/26/2	5			
Chromium 6+	6.92	0.0068	0.020	ug/l	5.00	1.95	100	50-150			
Matrix Spike Dup (W5H2003-MSD1)	Source	: 5G2302	1-01	Prep	ared & Aı	nalyzed: 0	8/26/2	5			
Chromium 6+	9.31	0.0068	0.020	ug/l	5.00	4.19	102	50-150	0.3	15	
Matrix Spike Dup (W5H2003-MSD2)	Source	: 5G2302	1-02	Prep	ared & Aı	nalyzed: 0	8/26/2	5			
Chromium 6+	7.13	0.0068	0.020	ug/l	5.00	1.95	104	50-150	3	15	

Project Manager: Cesar Ortiz

FINAL REPORT

La Puente Valley County Water P.O Box 3136; 112 N.First St. La Puente, CA 91744

Project Number: PVOU IZ - SCAQMD Quarterly

Project Manager: Cesar Ortiz

Reported:

09/11/2025 15:38

Quality Control Deculto

Metals by EPA 200 Series Methods											
Analyte	Result	MDL	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifie
Batch: W5H1647 - EPA 200.8											
Blank (W5H1647-BLK1)				Prepare	ed: 08/22/25	Analyze	ed: 08/2	25/25			
Arsenic, Total	ND	0.10	0.50	ug/l		-					
Beryllium, Total		0.023	0.10	ug/l							
Cadmium, Total		0.21	0.50	ug/l							
Chromium, Total	ND	0.62	2.0	ug/l							
Lead, Total	ND	0.10	0.20	ug/l							
Manganese, Total		0.13	1.0	ug/l							
Nickel, Total	ND	0.28	2.0	ug/l							
Selenium, Total	ND	0.13	0.50	ug/l							
LCS (W5H1647-BS1)				Prepare	ed: 08/22/25	Analyze	-d: 08/2	25/25			
Arsenic, Total	51.1	0.10	0.50	ug/l	50.0	7u.y 2 .	102	85-115			
Beryllium, Total	49.1	0.023	0.10	ug/l	50.0		98	85-115			
Cadmium, Total	48.8	0.21	0.50	ug/l	50.0		97	85-115			
Chromium, Total		0.62	2.0	ug/l	50.0		101	85-115			
Lead, Total		0.10	0.20	ug/l	50.0		100	85-115			
Manganese, Total		0.13	1.0	ug/l	50.0		101	85-115			
Nickel, Total		0.28	2.0	ug/l	50.0		101	85-115			
Selenium, Total	51.2	0.13	0.50	ug/l	50.0		102	85-115			
Matrix Spike (W5H1647-MS1)	Source	: 5G310	1 Ω_01	Droparo	ed: 08/22/25	Analyze	od: 08/3	05/25			
Arsenic, Total		0.10	0.50	ug/l	50.0	ND	100	70-130			
Beryllium, Total	48.3	0.023	0.10	ug/l	50.0	ND	96	70-130			
Cadmium, Total	48.2	0.21	0.50	ug/l	50.0	ND	96	70-130			
Chromium, Total	49.5	0.62	2.0	ug/l	50.0	0.626	98	70-130			
Lead, Total	50.1	0.10	0.20	ug/l	50.0	ND	100	70-130			
Manganese, Total	49.8	0.13	1.0	ug/l	50.0	0.221	99	70-130			
Nickel, Total	47.8	0.28	2.0	ug/l	50.0	ND	95	70-130			
Selenium, Total		0.13	0.50	ug/l	50.0	ND	100	70-130			
Matrix Spike (W5H1647-MS2)	Source	: 5G310	าย-บว	Drenare	ed: 08/22/25	Analyza	od: 08/3	25/25			
Arsenic, Total	50.7	0.10	0.50	ug/l	50.0	ND	101	70-130			
Beryllium, Total	48.4	0.023	0.10	ug/l	50.0	ND	97	70-130			
Cadmium, Total		0.21	0.50	ug/l	50.0	ND	99	70-130			
Chromium, Total		0.62	2.0	ug/l	50.0	0.758	99	70-130			
Lead, Total	50.9	0.10	0.20	ug/l	50.0	ND	102	70-130			
Manganese, Total		0.13	1.0	ug/l	50.0	0.297	100	70-130			
Nickel, Total		0.28	2.0	ug/l	50.0	ND	97	70-130			
Selenium, Total		0.13	0.50	ug/l	50.0	ND	102	70-130			
,				Ū							
Matrix Spike Dup (W5H1647-MSD1) Arsenic, Total		: 5G310 0 0.10	0.50	ug/l	ed: 08/22/25 50.0	Analyze ND	e d: U8/ 2 100	70-130	0.2	30	
Beryllium, Total		0.023	0.10	ug/l	50.0	ND	96	70-130	0.6	30	
Cadmium, Total		0.21	0.50	ug/l	50.0	ND	96	70-130	0.5	30	
G31008	- 10.0	J 1	0.00	~g, 1	30.0	.,5		. 5 . 60	3.3		ge 16 of

FINAL REPORT

La Puente Valley County Water P.O Box 3136; 112 N.First St. La Puente, CA 91744 **Project Number:** PVOU IZ - SCAQMD Quarterly

Reported: 09/11/2025 15:38

Project Manager: Cesar Ortiz

XX	Qual	lit

Quality Control Results

•	ontinued)										
Ameliate	Result	MDL	MRL	Units	Spike Level	Source Result	0/ DEC	%REC Limits	DDD	RPD Limit	Qualifie
Analyte Batch: W5H1647 - EPA 200.8 (Continue		MIDL	IVIKL	Units	Levei	Resuit	/orec	Lillits	KPD	LIIIII	Quaiiiie
•	•	FC2100	00.01	D	J. 00/22/25	A l)			
Matrix Spike Dup (W5H1647-MSD1) Chromium, Total		5 G310 0 0.62	2.0	ug/l	d: 08/22/25 50.0	0.626	97	70-130	0.4	30	
Lead, Total		0.10	0.20	ug/l	50.0	ND	100	70-130	0.3	30	
Manganese, Total	49.6	0.13	1.0	ug/l	50.0	0.221	99	70-130	0.6	30	
Nickel, Total		0.28	2.0	ug/l	50.0	ND	95	70-130	0.1	30	
Selenium, Total	50.1	0.13	0.50	ug/l	50.0	ND	100	70-130	0.2	30	
Matrix Spike Dup (W5H1647-MSD2)	Source	5G3100	8-02	Prepare	d: 08/22/25	Analyze	d: 08/2	25/25			
Arsenic, Total	50.3	0.10	0.50	ug/l	50.0	ND	100	70-130	0.9	30	
Beryllium, Total	48.0	0.023	0.10	ug/l	50.0	ND	96	70-130	8.0	30	
Cadmium, Total	48.7	0.21	0.50	ug/l	50.0	ND	97	70-130	2	30	
Chromium, Total	49.3	0.62	2.0	ug/l	50.0	0.758	97	70-130	2	30	
Lead, Total	50.2	0.10	0.20	ug/l	50.0	ND	100	70-130	2	30	
Manganese, Total	49.8	0.13	1.0	ug/l	50.0	0.297	99	70-130	1	30	
Nickel, Total	47.7	0.28	2.0	ug/l	50.0	ND	95	70-130	1	30	
Selenium, Total	50.7	0.13	0.50	ug/l	50.0	ND	101	70-130	8.0	30	
Quality Control Resu	ults									(Co	ontinued
Nitrosamines by GC/CI/MS/MS, EPA 5	21										
					Spike	Source		%REC		RPD	
Analyte	Result				-						
•	Resuit	MDL	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifie
atch: W5H2121 - EPA 521	Result	MDL	MRL		Level				RPD	Limit	Qualifie
Batch: W5H2121 - EPA 521 Blank (W5H2121-BLK1)				Prepare	-				RPD	Limit	Qualifie
Blank (W5H2121 - EPA 521 Blank (W5H2121-BLK1) N-Nitrosodimethylamine	·····ND	MDL	MRL 2.0		Level				RPD	Limit	Qualifie
Blank (W5H2121 - EPA 521 Blank (W5H2121-BLK1) N-Nitrosodimethylamine	ND			Prepare	Level				RPD	Limit	Qualifie
Blank (W5H2121 - EPA 521 Blank (W5H2121-BLK1) N-Nitrosodimethylamine Surrogate(s) NDMA-d6 LCS (W5H2121-BS1)	ND			Prepared ng/l	Level d: 08/27/25 25.0	Analyze	e d: 08/ 3	30/25 70-130	RPD	Limit	Qualifie
Batch: W5H2121 - EPA 521 Blank (W5H2121-BLK1) N-Nitrosodimethylamine Surrogate(s) NDMA-d6 LCS (W5H2121-BS1) N-Nitrosodimethylamine	ND 17.6			Prepared ng/l	Level d: 08/27/25	Analyze	e d: 08/ 3	30/25 70-130	RPD	Limit	Qualific
Batch: W5H2121 - EPA 521 Blank (W5H2121-BLK1) N-Nitrosodimethylamine Surrogate(s) NDMA-d6 LCS (W5H2121-BS1)	ND 17.6	1.3	2.0	Prepare ng/l ng/l	Level d: 08/27/25 25.0 d: 08/27/25	Analyze	71 ed: 08/ 3	30/25 70-130 30/25	RPD	Limit	Qualific
Batch: W5H2121 - EPA 521 Blank (W5H2121-BLK1) N-Nitrosodimethylamine Surrogate(s) NDMA-d6 LCS (W5H2121-BS1) N-Nitrosodimethylamine Surrogate(s) NDMA-d6	ND 17.6	1.3	2.0	Prepared ng/l Prepared ng/l ng/l	Level d: 08/27/25 25.0 d: 08/27/25 2.00 25.0	Analyze	71 ed: 08/3 82 79	70-130 80/25 50-150 70-130	RPD	Limit	Qualific
Batch: W5H2121 - EPA 521 Blank (W5H2121-BLK1) N-Nitrosodimethylamine Surrogate(s) NDMA-d6 LCS (W5H2121-BS1) N-Nitrosodimethylamine Surrogate(s)	17.6 1.63 19.7	1.3	2.0	Prepared ng/l Prepared ng/l ng/l	Level d: 08/27/25 25.0 d: 08/27/25 2.00	Analyze	71 ed: 08/3 82 79	70-130 80/25 50-150 70-130	RPD	50	Qualifie

FINAL REPORT

La Puente Valley County Water P.O Box 3136; 112 N.First St. La Puente, CA 91744 **Project Number:** PVOU IZ - SCAQMD Quarterly

Project Manager: Cesar Ortiz

Reported:

09/11/2025 15:38

Quality Control Results

Semivolatile Organic Compounds	s by GC/MS										
	-				Spike	Source		%REC		RPD	
Analyte	Result	MDL	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifie
Batch: W5H1889 - EPA 525.2											
Blank (W5H1889-BLK1)				Prepare	d: 08/25/2	5 Analyze	d: 08/2	27/25			
Benzo (a) pyrene		0.045	0.10	ug/l							
Bis(2-ethylhexyl)adipate		1.1	5.0	ug/l							
Bis(2-ethylhexyl)phthalate		0.41	3.0	ug/l							
Hexachlorocyclopentadiene		0.32	1.0	ug/l							
Surrogate(s) 1,3-Dimethyl-2-nitrobenzene				ug/l	5.00		95	70-130			
Perylene-d12				ug/l	5.00		98	50-120			
Triphenyl phosphate				ug/l	5.00		101	70-130			
	0.00										
LCS (W5H1889-BS1) Benzo (a) pyrene	0.406	0.045	0.10	Prepare ug/l	d: 08/25/2 0.500	5 Analyze	e d: 08/2 81	2 7/25 60-130			
Bis(2-ethylhexyl)adipate		1.1	5.0	ug/l	25.0		118	70-130			
Bis(2-ethylhexyl)phthalate		0.41	3.0	ug/l	15.0		118	70-130			
Hexachlorocyclopentadiene		0.32	1.0	ug/l	5.00		75	33-106			
Surrogate(s)											
1,3-Dimethyl-2-nitrobenzene	4.58			ug/l	5.00		92	70-130			
Perylene-d12	4.91			ug/l	5.00		98	50-120			
Triphenyl phosphate	5.56			ug/l	5.00		111	70-130			
LCS Dup (W5H1889-BSD1)				Prepare	d: 08/25/2	5 Analyze	d: 08/2	27/25			
Benzo (a) pyrene	0.417	0.045	0.10	ug/l	0.500	•	83	60-130	3	30	
Bis(2-ethylhexyl)adipate	29.8	1.1	5.0	ug/l	25.0		119	70-130	1	30	
Bis(2-ethylhexyl)phthalate		0.41	3.0	ug/l	15.0		117	70-130	8.0	30	
Hexachlorocyclopentadiene		0.32	1.0	ug/l	5.00		78	33-106	4	30	
Surrogate(s) 1,3-Dimethyl-2-nitrobenzene				ug/l	5.00		97	70-130			
Perylene-d12				ug/l	5.00		98	50-120			
Triphenyl phosphate				ug/l	5.00		113	70-130			

FINAL REPORT

La Puente Valley County Water P.O Box 3136; 112 N.First St. La Puente, CA 91744 **Project Number:** PVOU IZ - SCAQMD Quarterly

Project Manager: Cesar Ortiz

Reported:

09/11/2025 15:38

Quality Control Results

Volatile Organic Compounds by P&	T and GC/M	S									
Analyte	Result	MDL	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifi
Batch: W5H1390 - EPA 524.2	11004111			· · · · · ·		1105411					
Blank (W5H1390-BLK1)				Prepare	d: 08/19/25	Analyze	-d: 08/2	20/25			
1,1,1,2-Tetrachloroethane	ND	0.24	0.50	ug/l	u. 00, .5, <u>-</u> 5	7uy = .	.u. 00, 1	-0, -0			
1,1,1-Trichloroethane	ND	0.076	0.50	ug/l							
1,1,2,2-Tetrachloroethane	ND	0.20	0.50	ug/l							
1,1,2-Trichloroethane	ND	0.19	0.50	ug/l							
1,1-Dichloroethane	ND	0.12	0.50	ug/l							
1,1-Dichloroethene	ND	0.16	0.50	ug/l							
1,1-Dichloropropene	ND	0.14	0.50	ug/l							
1,2,3-Trichlorobenzene	ND	0.40	0.50	ug/l							B-0
1,2,4-Trichlorobenzene	ND	0.17	0.50	ug/l							
1,2,4-Trimethylbenzene	ND	0.20	0.50	ug/l							
1,2-Dichloroethane	ND	0.12	0.50	ug/l							
1,2-Dichloropropane	ND	0.13	0.50	ug/l							
1,3,5-Trimethylbenzene		0.17	0.50	ug/l							
1,3-Dichloropropane	ND	0.072	0.50	ug/l							
1,3-Dichloropropene, Total	ND		0.50	ug/l							
2,2-Dichloropropane	ND	0.17	0.50	ug/l							
2-Butanone	ND	0.43	5.0	ug/l							
2-Chlorotoluene	ND	0.15	0.50	ug/l							
2-Hexanone	ND	1.2	5.0	ug/l							
4-Chlorotoluene	ND	0.15	0.50	ug/l							
4-Methyl-2-pentanone	ND	1.4	5.0	ug/l							
Benzene		0.15	0.50	ug/l							
Bromobenzene	ND	0.15	0.50	ug/l							
Bromochloromethane	ND	0.15	0.50	ug/l							
Bromodichloromethane	ND	0.090	0.50	ug/l							
Bromoform	ND	0.14	0.50	ug/l							
Bromomethane		0.27	0.50	ug/l							
Carbon tetrachloride		0.11	0.50	ug/l							
Chlorobenzene	ND	0.15	0.50	ug/l							
Chloroethane	ND	0.17	0.50	ug/l							
Chloroform		0.10	0.50	ug/l							
Chloromethane	ND	0.23	0.50	ug/l							
cis-1,2-Dichloroethene	ND	0.12	0.50	ug/l							
cis-1,3-Dichloropropene		0.13	0.50	ug/l							
Dibromochloromethane		0.20	0.50	ug/l							
Dibromomethane	ND	0.20	0.50	ug/l							
Dichlorodifluoromethane (Freon 12)	ND	0.15	0.50	ug/l							
Di-isopropyl ether		1.1	2.0	ug/l							
Ethyl tert-butyl ether		0.48	2.0	ug/l							
G31008				=						D	ge 19 o

FINAL REPORT

La Puente Valley County Water P.O Box 3136; 112 N.First St. La Puente, CA 91744 **Project Number:** PVOU IZ - SCAQMD Quarterly

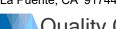
Project Manager: Cesar Ortiz

Reported:

09/11/2025 15:38

Quality Control Results

olatile Organic Compounds by P8	and GC/M	s (Conti	nuea)		C ."			0/8=6	555	
Analyte	Result	MDL	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD RPD Limit	Qualifi
tch: W5H1390 - EPA 524.2 (Contin	ued)									
lank (W5H1390-BLK1)				Prepare	d: 08/19/25	Analyze	d: 08/2	20/25		
Ethylbenzene		0.21	0.50	ug/l						
Freon 113		1.1	5.0	ug/l						
Hexachlorobutadiene		0.16	0.50	ug/l						
Isopropylbenzene	ND	0.18	0.50	ug/l						
m,p-Xylene		0.33	0.50	ug/l						
m-Dichlorobenzene	ND	0.14	0.50	ug/l						
Methyl tert-butyl ether (MTBE)		0.94	2.0	ug/l						
Methylene chloride		0.30	0.50	ug/l						
Naphthalene	ND	0.35	0.50	ug/l						
n-Butylbenzene	ND	0.29	0.50	ug/l						
n-Propylbenzene		0.18	0.50	ug/l						
o-Dichlorobenzene	ND	0.19	0.50	ug/l						
o-Xylene		0.20	0.50	ug/l						
p-Dichlorobenzene	ND	0.18	0.50	ug/l						
p-Isopropyltoluene	ND	0.25	0.50	ug/l						
sec-Butylbenzene	ND	0.24	0.50	ug/l						
Styrene	ND	0.19	0.50	ug/l						
Tert-amyl methyl ether	ND	0.59	2.0	ug/l						
tert-Butylbenzene	ND	0.18	0.50	ug/l						
Tetrachloroethene	ND	0.18	0.50	ug/l						
THMs, Total	ND		0.50	ug/l						
Toluene	ND	0.29	0.50	ug/l						
trans-1,2-Dichloroethene	ND	0.13	0.50	ug/l						
trans-1,3-Dichloropropene		0.14	0.50	ug/l						
Trichloroethene		0.18	0.50	ug/l						
Trichlorofluoromethane	ND	0.18	0.50	ug/l						
Vinyl chloride		0.18	0.50	ug/l						
Xylenes, Total			0.50	ug/l						
urrogate(s)										
1,2-Dichlorobenzene-d4	45.2			ug/l	50.0		90	70-130		
4-Bromofluorobenzene				ug/l	50.0		88	70-130		
CS (W5H1390-BS1)				Prepare	d: 08/19/25	Analyze	d: 08/2	20/25		
1,1,1,2-Tetrachloroethane	5.37	0.24	0.50	ug/l	5.00	_	107	70-130		
1,1,1-Trichloroethane	5.05	0.076	0.50	ug/l	5.00		101	70-130		
1,1,2,2-Tetrachloroethane	5.20	0.20	0.50	ug/l	5.00		104	70-130		
1,1,2-Trichloroethane		0.19	0.50	ug/l	5.00		104	70-130		
1,1-Dichloroethane	5.12	0.12	0.50	ug/l	5.00		102	70-130		
1,1-Dichloroethene	5.15	0.16	0.50	ug/l	5.00		103	70-130		
1,1-Dichloropropene	4.86	0.14	0.50	ug/l	5.00		97	70-130		


FINAL REPORT

La Puente Valley County Water P.O Box 3136; 112 N.First St. La Puente, CA 91744 **Project Number:** PVOU IZ - SCAQMD Quarterly

Project Manager: Cesar Ortiz

Reported:

09/11/2025 15:38

Quality Control Results

platile Organic Compounds by P&T					Spike	Source		%REC		RPD	
Analyte	Result	MDL	MRL	Units	Level	Result	%REC	Limits	RPD		Qualif
ch: W5H1390 - EPA 524.2 (Continue	ed)										
S (W5H1390-BS1)				Prepare	d: 08/19/25	Analyze	d: 08/2	20/25			
1,2,3-Trichlorobenzene	4.64	0.40	0.50	ug/l	5.00	•	93	70-130			
1,2,4-Trichlorobenzene	5.12	0.17	0.50	ug/l	5.00		102	70-130			
1,2,4-Trimethylbenzene	5.10	0.20	0.50	ug/l	5.00		102	70-130			
1,2-Dichloroethane	4.34	0.12	0.50	ug/l	5.00		87	70-130			
1,2-Dichloropropane	5.08	0.13	0.50	ug/l	5.00		102	70-130			
I,3,5-Trimethylbenzene	5.19	0.17	0.50	ug/l	5.00		104	70-130			
1,3-Dichloropropane	5.25	0.072	0.50	ug/l	5.00		105	70-130			
2,2-Dichloropropane	4.37	0.17	0.50	ug/l	5.00		87	70-130			
2-Butanone	5.10	0.43	5.0	ug/l	5.00		102	70-130			
2-Chlorotoluene	5.54	0.15	0.50	ug/l	5.00		111	70-130			
2-Hexanone	5.12	1.2	5.0	ug/l	5.00		102	70-130			
1-Chlorotoluene	5.32	0.15	0.50	ug/l	5.00		106	70-130			
4-Methyl-2-pentanone	5.11	1.4	5.0	ug/l	5.00		102	70-130			
Benzene	4.54	0.15	0.50	ug/l	5.00		91	70-130			
Bromobenzene	5.32	0.15	0.50	ug/l	5.00		106	70-130			
Bromochloromethane	5.18	0.15	0.50	ug/l	5.00		104	70-130			
Bromodichloromethane	5.02	0.090	0.50	ug/l	5.00		100	70-130			
Bromoform	5.16	0.14	0.50	ug/l	5.00		103	70-130			
Bromomethane	4.60	0.27	0.50	ug/l	5.00		92	70-130			
Carbon tetrachloride	5.45	0.11	0.50	ug/l	5.00		109	70-130			
Chlorobenzene	4.89	0.15	0.50	ug/l	5.00		98	70-130			
Chloroethane	5.42	0.17	0.50	ug/l	5.00		108	70-130			
Chloroform	5.39	0.10	0.50	ug/l	5.00		108	70-130			
Chloromethane	4.92	0.23	0.50	ug/l	5.00		98	70-130			
cis-1,2-Dichloroethene	5.03	0.12	0.50	ug/l	5.00		101	70-130			
sis-1,3-Dichloropropene		0.13	0.50	ug/l	5.00		89	70-130			
Dibromochloromethane		0.20	0.50	ug/l	5.00		105	70-130			
Dibromomethane	5.07	0.20	0.50	ug/l	5.00		101	70-130			
Dichlorodifluoromethane (Freon 12)	5.18	0.15	0.50	ug/l	5.00		104	70-130			
Oi-isopropyl ether		1.1	2.0	ug/l	20.0		98	70-130			
Ethyl tert-butyl ether		0.48	2.0	ug/l	20.0		98	70-130			
Ethylbenzene		0.21	0.50	ug/l	5.00		94	70-130			
Freon 113		1.1	5.0	ug/l	5.00		102	70-130			
Hexachlorobutadiene		0.16	0.50	ug/l	5.00		97	70-130			
sopropylbenzene		0.18	0.50	ug/l	5.00		96	70-130			
n,p-Xylene		0.33	0.50	ug/l	5.00		105	70-130			
n-Dichlorobenzene		0.14	0.50	ug/l	5.00		107	70-130			
Methyl tert-butyl ether (MTBE)		0.94	2.0	ug/l	20.0		95	70-130			
Methylene chloride		0.30	0.50	ug/l	5.00		102	70-130			

FINAL REPORT

La Puente Valley County Water P.O Box 3136; 112 N.First St. La Puente, CA 91744 **Project Number:** PVOU IZ - SCAQMD Quarterly

Project Manager: Cesar Ortiz

Reported:

09/11/2025 15:38

Quality Control Results

Analysis) og l t	MDi	BADI	Hait-	Spike	Source	/ DEC	%REC	DDD	RPD	0
Analyte F atch: W5H1390 - EPA 524.2 (Continued)	Result	MDL	MRL	Units	Level	Result 9	%KEC	Limits	KPU	Limit	Qualifie
				D	J. 00 (10 (2	F A a l a al	. 00 /2	00/25			
LCS (W5H1390-BS1) Naphthalene	5.12	0.35	0.50	ug/l	a: 08/19/2 5.00	5 Analyzed	: 08/2 102	70-130			
n-Butylbenzene		0.29	0.50	ug/l	5.00		103	70-130			
n-Propylbenzene		0.18	0.50	ug/l	5.00		106	70-130			
o-Dichlorobenzene		0.19	0.50	ug/l	5.00		104	70-130			
o-Xylene		0.20	0.50	ug/l	5.00		109	70-130			
p-Dichlorobenzene	5.59	0.18	0.50	ug/l	5.00		112	70-130			
p-Isopropyltoluene		0.25	0.50	ug/l	5.00		99	70-130			
sec-Butylbenzene		0.24	0.50	ug/l	5.00		103	70-130			
Styrene		0.19	0.50	ug/l	5.00		103	70-130			
Tert-amyl methyl ether		0.59	2.0	ug/l	20.0		89	70-130			
tert-Butylbenzene		0.18	0.50	ug/l	5.00		109	70-130			
Tetrachloroethene		0.18	0.50	ug/l	5.00		106	70-130			
Toluene	5.20	0.29	0.50	ug/l	5.00		104	70-130			
trans-1,2-Dichloroethene	5.13	0.13	0.50	ug/l	5.00		103	70-130			
trans-1,3-Dichloropropene	5.46	0.14	0.50	ug/l	5.00		109	70-130			
Trichloroethene	5.09	0.18	0.50	ug/l	5.00		102	70-130			
Trichlorofluoromethane	5.50	0.18	0.50	ug/l	5.00		110	70-130			
Vinyl chloride		0.18	0.50	ug/l	5.00		100	70-130			
urrogate(s) 1,2-Dichlorobenzene-d4				ug/l	50.0		104	70-130			
4-Bromofluorobenzene	52.8			ug/l	50.0		106	70-130			
CC D.::: (WELI 200 BCD1)				Виомоно	d. 00/10/2	5 Analyzed	. 00/3	00/25			
.CS Dup (W5H1390-BSD1) 1,1,1,2-Tetrachloroethane	5.19	0.24	0.50	ug/l	5.00	Analyzeu	104	70-130	3	30	
1,1,1-Trichloroethane	4.71	0.076	0.50	ug/l	5.00		94	70-130	7	30	
1,1,2,2-Tetrachloroethane	5.16	0.20	0.50	ug/l	5.00		103	70-130	0.8	30	
1,1,2-Trichloroethane		0.19	0.50	ug/l	5.00		102	70-130	2	30	
1,1-Dichloroethane		0.12	0.50	ug/l	5.00		97	70-130	5	30	
1,1-Dichloroethene	4.92	0.16	0.50	ug/l	5.00		98	70-130	5	30	
1,1-Dichloropropene	4.43	0.14	0.50	ug/l	5.00		89	70-130	9	30	
1,2,3-Trichlorobenzene	4.50	0.40	0.50	ug/l	5.00		90	70-130	3	30	
1,2,4-Trichlorobenzene	4.87	0.17	0.50	ug/l	5.00		97	70-130	5	30	
1,2,4-Trimethylbenzene		0.20	0.50	ug/l	5.00		96	70-130	7	30	
1,2-Dichloroethane		0.12	0.50	ug/l	5.00		98	70-130	12	30	
1,2-Dichloropropane		0.13	0.50	ug/l	5.00		98	70-130	4	30	
1,3,5-Trimethylbenzene		0.17	0.50	ug/l	5.00		97	70-130	7	30	
1,3-Dichloropropane		0.072	0.50	ug/l	5.00		103	70-130	2	30	
2,2-Dichloropropane		0.17	0.50	ug/l	5.00		80	70-130	9	30	
2-Butanone		0.43	5.0	ug/l	5.00		97	70-130	5	30	
2-Chlorotoluene	5.19	0.15	0.50	ug/l	5.00		104	70-130	6	30	

FINAL REPORT

La Puente Valley County Water P.O Box 3136; 112 N.First St. La Puente, CA 91744

Project Number: PVOU IZ - SCAQMD Quarterly

Project Manager: Cesar Ortiz

Reported:

09/11/2025 15:38

Quality Control Results

					Spike	Source	_	%REC		RPD	
Analyte	Result	MDL	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualific
ch: W5H1390 - EPA 524.2 (Continue	d)										
CS Dup (W5H1390-BSD1)	4.00	4.0	F 0		d: 08/19/2	5 Analyze			_	20	
2-Hexanone		1.2	5.0	ug/l	5.00		98	70-130	5	30	
4-Chlorotoluene		0.15	0.50	ug/l	5.00		100	70-130	7	30	
4-Methyl-2-pentanone		1.4	5.0	ug/l	5.00		102	70-130	0.2	30	
Benzene		0.15	0.50	ug/l	5.00		79	70-130	14	30	
Bromobenzene		0.15	0.50	ug/l	5.00		102	70-130	5	30	
Bromochloromethane		0.15	0.50	ug/l	5.00		101	70-130	2	30	
Bromodichloromethane	4.85	0.090	0.50	ug/l	5.00		97	70-130	3	30	
Bromoform	5.16	0.14	0.50	ug/l	5.00		103	70-130	0.08	30	
Bromomethane		0.27	0.50	ug/l	5.00		91	70-130	0.6	30	
Carbon tetrachloride	4.98	0.11	0.50	ug/l	5.00		100	70-130	9	30	
Chlorobenzene	4.70	0.15	0.50	ug/l	5.00		94	70-130	4	30	
Chloroethane	5.43	0.17	0.50	ug/l	5.00		109	70-130	0.2	30	
Chloroform	4.82	0.10	0.50	ug/l	5.00		96	70-130	11	30	
Chloromethane	4.70	0.23	0.50	ug/l	5.00		94	70-130	5	30	
cis-1,2-Dichloroethene	4.81	0.12	0.50	ug/l	5.00		96	70-130	5	30	
cis-1,3-Dichloropropene	4.35	0.13	0.50	ug/l	5.00		87	70-130	2	30	
Dibromochloromethane	5.13	0.20	0.50	ug/l	5.00		103	70-130	2	30	
Dibromomethane	4.95	0.20	0.50	ug/l	5.00		99	70-130	2	30	
Dichlorodifluoromethane (Freon 12)	4.82	0.15	0.50	ug/l	5.00		96	70-130	7	30	
Di-isopropyl ether		1.1	2.0	ug/l	20.0		92	70-130	6	30	
Ethyl tert-butyl ether		0.48	2.0	ug/l	20.0		97	70-130	1	30	
Ethylbenzene		0.21	0.50	ug/l	5.00		88	70-130	7	30	
Freon 113		1.1	5.0	ug/l	5.00		95	70-130	8	30	
Hexachlorobutadiene		0.16	0.50	ug/l	5.00		91	70-130	7	30	
sopropylbenzene		0.18	0.50	ug/l	5.00		90	70-130	, 7	30	
n,p-Xylene		0.10	0.50	ug/l	5.00		99	70-130	6	30	
m-Dichlorobenzene		0.33	0.50	ug/l ug/l	5.00		101	70-130	6	30	
Methyl tert-butyl ether (MTBE)		0.14	2.0		20.0			70-130			
				ug/l			93	70-130	3	30	
,		0.30	0.50	ug/l	5.00		98		4	30	
Naphthalene		0.35	0.50	ug/l	5.00		101	70-130	1	30	
n-Butylbenzene		0.29	0.50	ug/l	5.00		96	70-130	6	30	
n-Propylbenzene		0.18	0.50	ug/l	5.00		98	70-130	8	30	
o-Dichlorobenzene		0.19	0.50	ug/l	5.00		98	70-130	6	30	
o-Xylene		0.20	0.50	ug/l	5.00		102	70-130	6	30	
o-Dichlorobenzene		0.18	0.50	ug/l	5.00		106	70-130	5	30	
o-Isopropyltoluene		0.25	0.50	ug/l	5.00		93	70-130	7	30	
sec-Butylbenzene	4.76	0.24	0.50	ug/l	5.00		95	70-130	7	30	
Styrene	4.68	0.19	0.50	ug/l	5.00		94	70-130	9	30	

FINAL REPORT

La Puente Valley County Water P.O Box 3136; 112 N.First St. La Puente, CA 91744

5G31008

Project Number: PVOU IZ - SCAQMD Quarterly

Project Manager: Cesar Ortiz

Reported:

09/11/2025 15:38

Quality Control Results

(Continued)

Page 24 of 29

Volatile Organic Compounds by P&T and	d GC/M	S (Conti	nued)								
Analyte	Result	MDL	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifie
atch: W5H1390 - EPA 524.2 (Continued)											
LCS Dup (W5H1390-BSD1)				Prepare	d: 08/19/25	Analyze	d: 08/2	20/25			
tert-Butylbenzene		0.18	0.50	ug/l	5.00	-	102	70-130	6	30	
Tetrachloroethene	- 4.98	0.18	0.50	ug/l	5.00		100	70-130	6	30	
Toluene		0.29	0.50	ug/l	5.00		101	70-130	3	30	
trans-1,2-Dichloroethene		0.13	0.50	ug/l	5.00		96	70-130	7	30	
trans-1,3-Dichloropropene		0.14	0.50	ug/l	5.00		106	70-130	3	30	
Trichloroethene	- 4.69	0.18	0.50	ug/l	5.00		94	70-130	8	30	
Trichlorofluoromethane		0.18	0.50	ug/l	5.00		103	70-130	6	30	
Vinyl chloride		0.18	0.50	ug/l	5.00		101	70-130	1	30	
Surrogate(s) 1,2-Dichlorobenzene-d4	50.8			ug/l	50.0		102	70-130			
4-Bromofluorobenzene				ug/l	50.0		104	70-130			
Matrix Spike (W5H1390-MS1)	Source	: 5H1511	10-06	Prenare	d: 08/19/25	Analyze	-d- 08/2	20/25			
1,1,1,2-Tetrachloroethane		0.24	0.50	ug/l	5.00	ND	113	70-130			
1,1,1-Trichloroethane	6.56	0.076	0.50	ug/l	5.00	ND	131	70-130			MS-0
1,1,2,2-Tetrachloroethane	5.31	0.20	0.50	ug/l	5.00	ND	106	70-130			
1,1,2-Trichloroethane	5.33	0.19	0.50	ug/l	5.00	ND	107	70-130			
1,1-Dichloroethane	5.01	0.12	0.50	ug/l	5.00	0.170	97	70-130			
1,1-Dichloroethene	5.14	0.16	0.50	ug/l	5.00	0.236	98	70-130			
1,1-Dichloropropene	- 5.54	0.14	0.50	ug/l	5.00	ND	111	70-130			
1,2,3-Trichlorobenzene	- 4.82	0.40	0.50	ug/l	5.00	ND	96	70-130			
1,2,4-Trichlorobenzene	5.40	0.17	0.50	ug/l	5.00	ND	108	70-130			
1,2,4-Trimethylbenzene	- 5.34	0.20	0.50	ug/l	5.00	ND	107	70-130			
1,2-Dichloroethane	- 5.30	0.12	0.50	ug/l	5.00	ND	106	70-130			
1,2-Dichloropropane	5.10	0.13	0.50	ug/l	5.00	ND	102	70-130			
1,3,5-Trimethylbenzene	5.43	0.17	0.50	ug/l	5.00	ND	109	70-130			
1,3-Dichloropropane		0.072	0.50	ug/l	5.00	ND	108	70-130			
2,2-Dichloropropane	5.10	0.17	0.50	ug/l	5.00	ND	102	70-130			
2-Butanone	4.03	0.43	5.0	ug/l	5.00	ND	81	70-130			
2-Chlorotoluene	- 5.85	0.15	0.50	ug/l	5.00	ND	117	70-130			
2-Hexanone	- 5.22	1.2	5.0	ug/l	5.00	ND	104	70-130			
4-Chlorotoluene	- 5.56	0.15	0.50	ug/l	5.00	ND	111	70-130			
4-Methyl-2-pentanone	6.21	1.4	5.0	ug/l	5.00	ND	124	70-130			
Benzene		0.15	0.50	ug/l	5.00	ND	108	70-130			
Bromobenzene		0.15	0.50	ug/l	5.00	ND	108	70-130			
Bromochloromethane		0.15	0.50	ug/l	5.00	ND	106	70-130			
Bromodichloromethane		0.090	0.50	ug/l	5.00	ND	103	70-130			
Bromoform		0.14	0.50	ug/l	5.00	ND	106	70-130			
Bromomethane		0.27	0.50	ug/l	5.00	ND	77	70-130			
Carbon tetrachloride		0.11	0.50	ug/l	5.00	ND	130	70-130			

FINAL REPORT

La Puente Valley County Water P.O Box 3136; 112 N.First St. La Puente, CA 91744 **Project Number:** PVOU IZ - SCAQMD Quarterly

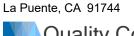
Reported: 09/11/2025 15:38

Project Manager: Cesar Ortiz

Quality Control Results

5.22 5.06 5.06 4.91 5.21 4.72 5.47 5.14 5.22 17.8 18.3 5.00 5.29 5.15 5.47 5.55 17.8 4.57 5.26	MDL 2: 5H1511 0.15 0.17 0.10 0.23 0.12 0.13 0.20 0.20 0.15 1.1 0.48 0.21 1.1 0.16 0.18 0.33 0.14 0.94 0.30	0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50	Units Prepare ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	Spike Level d: 08/19/25 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.	Source Result 5 Analyze ND ND 0.120 ND 0.333 ND		%REC Limits 20/25 70-130	RPD	RPD	Qualifie
5.22 5.06 5.06 4.91 5.21 4.72 5.47 5.14 5.22 17.8 18.3 5.00 5.00 5.29 5.15 5.47 5.55 17.8 4.57	5. 5H1511 0.15 0.17 0.10 0.23 0.12 0.13 0.20 0.20 0.15 1.1 0.48 0.21 1.1 0.16 0.18 0.33 0.14	10-06 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 2.0 2.0 0.50 0.50 0.50 0.50 0.50 2.0 2.0 0.50 0.50	Prepare ug/I ug/I ug/I ug/I ug/I ug/I ug/I ug/I	d: 08/19/2: 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.0	5 Analyze ND ND 0.120 ND 0.333 ND	ed: 08/2 104 101 99 98 97 94 109 103 104 89 91 100 106 103 109	20/25 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130			
5.22 5.06 5.06 4.91 5.21 4.72 5.47 5.14 5.22 17.8 18.3 5.00 5.00 5.29 5.15 5.47 5.55 17.8 4.57	0.15 0.17 0.10 0.23 0.12 0.13 0.20 0.20 0.15 1.1 0.48 0.21 1.1 0.16 0.18 0.33 0.14 0.94	0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50	ug/I ug/I ug/I ug/I ug/I ug/I ug/I ug/I	5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 20.0 20.0 5.00 5.00 5.00 5.00 5.00	ND ND 0.120 ND 0.333 ND	104 101 99 98 97 94 109 103 104 89 91 100 100 106 103 109	70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130			
5.22 5.06 5.06 4.91 5.21 4.72 5.47 5.14 5.22 17.8 18.3 5.00 5.00 5.29 5.15 5.47 5.55 17.8 4.57	0.15 0.17 0.10 0.23 0.12 0.13 0.20 0.20 0.15 1.1 0.48 0.21 1.1 0.16 0.18 0.33 0.14 0.94	0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50	ug/I ug/I ug/I ug/I ug/I ug/I ug/I ug/I	5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 20.0 20.0 5.00 5.00 5.00 5.00 5.00	ND ND 0.120 ND 0.333 ND	104 101 99 98 97 94 109 103 104 89 91 100 100 106 103 109	70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130			
5.06 4.91 5.21 4.72 5.47 5.14 5.22 17.8 18.3 5.00 5.00 5.29 5.15 5.47 5.55 17.8 4.57	0.10 0.23 0.12 0.13 0.20 0.20 0.15 1.1 0.48 0.21 1.1 0.16 0.18 0.33 0.14	0.50 0.50 0.50 0.50 0.50 0.50 0.50 2.0 2.0 0.50 0.50 0.50 0.50 0.50 0.50	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	5.00 5.00 5.00 5.00 5.00 5.00 20.0 20.0	0.120 ND 0.333 ND	99 98 97 94 109 103 104 89 91 100 100 106 103 109	70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130			
4.91 5.21 4.72 5.47 5.14 5.22 17.8 18.3 5.00 5.00 5.29 5.15 5.47 5.55 17.8 4.57	0.23 0.12 0.13 0.20 0.20 0.15 1.1 0.48 0.21 1.1 0.16 0.18 0.33 0.14 0.94	0.50 0.50 0.50 0.50 0.50 0.50 2.0 2.0 0.50 5.0 0.50 0.50 0.50 0.50 0.50	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	5.00 5.00 5.00 5.00 5.00 5.00 20.0 20.0	ND 0.333 ND	98 97 94 109 103 104 89 91 100 100 106 103	70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130			
5.21 4.72 5.47 5.14 5.22 17.8 18.3 5.00 5.29 5.15 5.47 5.55 17.8 4.57	0.12 0.13 0.20 0.20 0.15 1.1 0.48 0.21 1.1 0.16 0.18 0.33 0.14 0.94	0.50 0.50 0.50 0.50 0.50 2.0 2.0 0.50 5.0 0.50 0.50 0.50 0.50 0.50	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	5.00 5.00 5.00 5.00 5.00 20.0 20.0 5.00 5.0	0.333 ND	97 94 109 103 104 89 91 100 100 106 103	70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130			
4.72 5.47 5.14 5.22 17.8 18.3 5.00 5.00 5.29 5.15 5.47 5.55 17.8 4.57	0.13 0.20 0.20 0.15 1.1 0.48 0.21 1.1 0.16 0.18 0.33 0.14 0.94	0.50 0.50 0.50 0.50 2.0 2.0 0.50 5.0 0.50 0.50 0.50 0.50 0.50	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	5.00 5.00 5.00 5.00 20.0 20.0 5.00 5.00	ND N	94 109 103 104 89 91 100 100 106 103	70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130			
5.47 5.14 5.22 17.8 18.3 5.00 5.00 5.29 5.15 5.47 5.55 17.8 4.57	0.20 0.20 0.15 1.1 0.48 0.21 1.1 0.16 0.18 0.33 0.14 0.94	0.50 0.50 0.50 2.0 2.0 0.50 5.0 0.50 0.50 0.50 0.50 2.0	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	5.00 5.00 5.00 20.0 20.0 5.00 5.00 5.00	ND	109 103 104 89 91 100 100 106 103	70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130			
5.14 5.22 17.8 18.3 5.00 5.00 5.29 5.15 5.47 5.55 17.8 4.57	0.20 0.15 1.1 0.48 0.21 1.1 0.16 0.18 0.33 0.14 0.94	0.50 0.50 2.0 2.0 0.50 5.0 0.50 0.50 0.5	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	5.00 5.00 20.0 20.0 5.00 5.00 5.00 5.00	ND	103 104 89 91 100 100 106 103	70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130			
5.22 17.8 18.3 5.00 5.00 5.29 5.15 5.47 5.55 17.8 4.57	0.15 1.1 0.48 0.21 1.1 0.16 0.18 0.33 0.14 0.94	0.50 2.0 2.0 0.50 5.0 0.50 0.50 0.50 0.5	ug/l ug/l ug/l ug/l ug/l ug/l ug/l	5.00 20.0 20.0 5.00 5.00 5.00 5.00 5.00	ND ND ND ND ND ND ND ND ND	104 89 91 100 100 106 103	70-130 70-130 70-130 70-130 70-130 70-130 70-130			
17.8 18.3 5.00 5.00 5.29 5.15 5.47 5.55 17.8 4.57	1.1 0.48 0.21 1.1 0.16 0.18 0.33 0.14 0.94	2.0 2.0 0.50 5.0 0.50 0.50 0.50 0.50 2.0	ug/l ug/l ug/l ug/l ug/l ug/l ug/l	20.0 20.0 5.00 5.00 5.00 5.00 5.00 5.00	ND ND ND ND ND ND	89 91 100 100 106 103 109	70-130 70-130 70-130 70-130 70-130 70-130			
18.3 5.00 5.00 5.29 5.15 5.47 5.55 17.8 4.57	0.48 0.21 1.1 0.16 0.18 0.33 0.14 0.94	2.0 0.50 5.0 0.50 0.50 0.50 0.50 2.0	ug/l ug/l ug/l ug/l ug/l ug/l	20.0 5.00 5.00 5.00 5.00 5.00 5.00	ND ND ND ND ND	91 100 100 106 103 109	70-130 70-130 70-130 70-130 70-130 70-130			
5.00 5.00 5.29 5.15 5.47 5.55 17.8 4.57	0.21 1.1 0.16 0.18 0.33 0.14 0.94	0.50 5.0 0.50 0.50 0.50 0.50 0.50	ug/l ug/l ug/l ug/l ug/l ug/l	5.00 5.00 5.00 5.00 5.00 5.00	ND ND ND ND	100 100 106 103 109	70-130 70-130 70-130 70-130 70-130			
5.00 5.29 5.15 5.47 5.55 17.8 4.57	1.1 0.16 0.18 0.33 0.14 0.94	5.0 0.50 0.50 0.50 0.50 2.0	ug/l ug/l ug/l ug/l ug/l	5.00 5.00 5.00 5.00 5.00	ND ND ND ND	100 106 103 109	70-130 70-130 70-130 70-130			
5.29 5.15 5.47 5.55 17.8 4.57	0.16 0.18 0.33 0.14 0.94	0.50 0.50 0.50 0.50 2.0	ug/l ug/l ug/l ug/l	5.00 5.00 5.00 5.00	ND ND ND	106 103 109	70-130 70-130 70-130			
5.15 5.47 5.55 17.8 4.57	0.18 0.33 0.14 0.94	0.50 0.50 0.50 2.0	ug/l ug/l ug/l	5.00 5.00 5.00	ND ND	103 109	70-130 70-130			
5.47 5.55 17.8 4.57	0.33 0.14 0.94	0.50 0.50 2.0	ug/l ug/l	5.00 5.00	ND	109	70-130			
5.55 17.8 4.57	0.14 0.94	0.50 2.0	ug/l	5.00						
17.8 4.57	0.94	2.0	-		ND	111	70-130			
4.57			ug/l	20.0						
	0.30		Ū	20.0	ND	89	70-130			
5.26		0.50	ug/l	5.00	ND	91	70-130			
	0.35	0.50	ug/l	5.00	ND	105	70-130			
5.59	0.29	0.50	ug/l	5.00	ND	112	70-130			
5.65	0.18	0.50	ug/l	5.00	ND	113	70-130			
5.31	0.19	0.50	ug/l	5.00	ND	106	70-130			
5.60	0.20	0.50	ug/l	5.00	ND	112	70-130			
5.74	0.18	0.50	ug/l	5.00	ND	115	70-130			
5.31	0.25	0.50	ug/l	5.00	ND	106	70-130			
5.36	0.24	0.50	ug/l	5.00	ND	107	70-130			
5.35	0.19	0.50	ug/l	5.00	ND	107	70-130			
21.7	0.59	2.0	ug/l	20.0	ND	108	70-130			
5.69	0.18	0.50	ug/l	5.00	ND	114	70-130			
32.2	0.18	0.50	ug/l	5.00	21.8	206	70-130			MS-
5.49	0.29	0.50	ug/l	5.00	ND	110	70-130			
4.73	0.13	0.50	ug/l	5.00	ND	95	70-130			
6.16	0.14	0.50	ug/l	5.00	ND	123	70-130			
7.86	0.18	0.50	ug/l	5.00	2.19	113	70-130			
5.30	0.18	0.50	ug/l	5.00	ND	106	70-130			
	0.18	0.50	ug/l	5.00	ND	102	70-130			
	5.35 21.7 5.69 32.2 5.49 4.73 6.16 7.86 5.30 5.08	5.35 0.19 21.7 0.59 5.69 0.18 32.2 0.18 5.49 0.29 4.73 0.13 6.16 0.14 7.86 0.18 5.30 0.18 5.08 0.18	5.35 0.19 0.50 21.7 0.59 2.0 5.69 0.18 0.50 32.2 0.18 0.50 5.49 0.29 0.50 4.73 0.13 0.50 6.16 0.14 0.50 7.86 0.18 0.50 5.30 0.18 0.50	5.35 0.19 0.50 ug/l 21.7 0.59 2.0 ug/l 5.69 0.18 0.50 ug/l 32.2 0.18 0.50 ug/l 5.49 0.29 0.50 ug/l 4.73 0.13 0.50 ug/l 6.16 0.14 0.50 ug/l 7.86 0.18 0.50 ug/l 5.30 0.18 0.50 ug/l 5.08 0.18 0.50 ug/l	5.35 0.19 0.50 ug/l 5.00 21.7 0.59 2.0 ug/l 20.0 5.69 0.18 0.50 ug/l 5.00 32.2 0.18 0.50 ug/l 5.00 5.49 0.29 0.50 ug/l 5.00 4.73 0.13 0.50 ug/l 5.00 6.16 0.14 0.50 ug/l 5.00 7.86 0.18 0.50 ug/l 5.00 5.30 0.18 0.50 ug/l 5.00 5.08 0.18 0.50 ug/l 5.00	5.35 0.19 0.50 ug/l 5.00 ND 21.7 0.59 2.0 ug/l 20.0 ND 5.69 0.18 0.50 ug/l 5.00 ND 32.2 0.18 0.50 ug/l 5.00 21.8 5.49 0.29 0.50 ug/l 5.00 ND 4.73 0.13 0.50 ug/l 5.00 ND 6.16 0.14 0.50 ug/l 5.00 ND 7.86 0.18 0.50 ug/l 5.00 ND 5.08 0.18 0.50 ug/l 5.00 ND 5.08 0.18 0.50 ug/l 5.00 ND	5.35 0.19 0.50 ug/l 5.00 ND 107 21.7 0.59 2.0 ug/l 20.0 ND 108 5.69 0.18 0.50 ug/l 5.00 ND 114 32.2 0.18 0.50 ug/l 5.00 21.8 206 5.49 0.29 0.50 ug/l 5.00 ND 110 4.73 0.13 0.50 ug/l 5.00 ND 95 6.16 0.14 0.50 ug/l 5.00 ND 123 7.86 0.18 0.50 ug/l 5.00 ND 106 5.08 0.18 0.50 ug/l 5.00 ND 102	5.35 0.19 0.50 ug/l 5.00 ND 107 70-130 21.7 0.59 2.0 ug/l 20.0 ND 108 70-130 5.69 0.18 0.50 ug/l 5.00 ND 114 70-130 32.2 0.18 0.50 ug/l 5.00 ND 110 70-130 5.49 0.29 0.50 ug/l 5.00 ND 110 70-130 4.73 0.13 0.50 ug/l 5.00 ND 95 70-130 6.16 0.14 0.50 ug/l 5.00 ND 123 70-130 7.86 0.18 0.50 ug/l 5.00 ND 106 70-130 5.08 0.18 0.50 ug/l 5.00 ND 106 70-130	5.35 0.19 0.50 ug/l 5.00 ND 107 70-130 21.7 0.59 2.0 ug/l 20.0 ND 108 70-130 5.69 0.18 0.50 ug/l 5.00 ND 114 70-130 32.2 0.18 0.50 ug/l 5.00 21.8 206 70-130 5.49 0.29 0.50 ug/l 5.00 ND 110 70-130 4.73 0.13 0.50 ug/l 5.00 ND 95 70-130 6.16 0.14 0.50 ug/l 5.00 ND 123 70-130 7.86 0.18 0.50 ug/l 5.00 ND 106 70-130 5.08 0.18 0.50 ug/l 5.00 ND 102 70-130	5.35 0.19 0.50 ug/l 5.00 ND 107 70-130 21.7 0.59 2.0 ug/l 20.0 ND 108 70-130 5.69 0.18 0.50 ug/l 5.00 ND 114 70-130 32.2 0.18 0.50 ug/l 5.00 21.8 206 70-130 5.49 0.29 0.50 ug/l 5.00 ND 110 70-130 4.73 0.13 0.50 ug/l 5.00 ND 95 70-130 6.16 0.14 0.50 ug/l 5.00 ND 123 70-130 7.86 0.18 0.50 ug/l 5.00 ND 106 70-130 5.08 0.18 0.50 ug/l 5.00 ND 102 70-130

FINAL REPORT


La Puente Valley County Water P.O Box 3136; 112 N.First St.

Project Number: PVOU IZ - SCAQMD Quarterly

Project Manager: Cesar Ortiz

Reported:

09/11/2025 15:38

5G31008

Quality Control Results

(Continued)

Page 26 of 29

Volatile Organic Compounds by P&T	and GC/M	S (Conti	nued)								
Analyte	Result	MDL	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifie
atch: W5H1390 - EPA 524.2 (Continue	d)										
Matrix Spike (W5H1390-MS1)	Source	: 5H1511	10-06	Prepare	d: 08/19/2	5 Analyze	ed: 08/2	20/25			
Surrogate(s) 4-Bromofluorobenzene	52.4			ug/l	50.0		105	70-130			
Matrix Spike Dup (W5H1390-MSD1)	Source	: 5H1511	10-06	Prepare	d: 08/19/2	5 Analyze	ed: 08/2	20/25			
1,1,1,2-Tetrachloroethane		0.24	0.50	ug/l	5.00	ND	114	70-130	2	30	
1,1,1-Trichloroethane		0.076	0.50	ug/l	5.00	ND	135	70-130	3	30	MS-0
1,1,2,2-Tetrachloroethane		0.20	0.50	ug/l	5.00	ND	106	70-130	0.3	30	
1,1,2-Trichloroethane		0.19	0.50	ug/l	5.00	ND	107	70-130	0.7	30	
1,1-Dichloroethane	5.19	0.12	0.50	ug/l	5.00	0.170	100	70-130	4	30	
1,1-Dichloroethene		0.16	0.50	ug/l	5.00	0.236	104	70-130	5	30	
1,1-Dichloropropene		0.14	0.50	ug/l	5.00	ND	116	70-130	4	30	
1,2,3-Trichlorobenzene		0.40	0.50	ug/l	5.00	ND	100	70-130	3	30	
1,2,4-Trichlorobenzene		0.17	0.50	ug/l	5.00	ND	112	70-130	3	30	
1,2,4-Trimethylbenzene	5.43	0.20	0.50	ug/l	5.00	ND	109	70-130	2	30	
1,2-Dichloroethane		0.12	0.50	ug/l	5.00	ND	109	70-130	3	30	
1,2-Dichloropropane		0.13	0.50	ug/l	5.00	ND	104	70-130	2	30	
1,3,5-Trimethylbenzene		0.17	0.50	ug/l	5.00	ND	109	70-130	0.7	30	
1,3-Dichloropropane	5.53	0.072	0.50	ug/l	5.00	ND	111	70-130	2	30	
2,2-Dichloropropane	5.31	0.17	0.50	ug/l	5.00	ND	106	70-130	4	30	
2-Butanone	4.48	0.43	5.0	ug/l	5.00	ND	90	70-130	11	30	
2-Chlorotoluene	5.75	0.15	0.50	ug/l	5.00	ND	115	70-130	2	30	
2-Hexanone	4.94	1.2	5.0	ug/l	5.00	ND	99	70-130	5	30	
4-Chlorotoluene		0.15	0.50	ug/l	5.00	ND	113	70-130	2	30	
4-Methyl-2-pentanone	6.10	1.4	5.0	ug/l	5.00	ND	122	70-130	2	30	
Benzene		0.15	0.50	ug/l	5.00	ND	111	70-130	2	30	
Bromobenzene	5.52	0.15	0.50	ug/l	5.00	ND	110	70-130	2	30	
Bromochloromethane	5.14	0.15	0.50	ug/l	5.00	ND	103	70-130	3	30	
Bromodichloromethane	5.19	0.090	0.50	ug/l	5.00	ND	104	70-130	0.3	30	
Bromoform	5.27	0.14	0.50	ug/l	5.00	ND	105	70-130	0.3	30	
Bromomethane		0.27	0.50	ug/l	5.00	ND	87	70-130	12	30	
Carbon tetrachloride		0.11	0.50	ug/l	5.00	ND	132	70-130	2	30	MS-0
Chlorobenzene		0.15	0.50	ug/l	5.00	ND	104	70-130	0.3	30	
Chloroethane		0.17	0.50	ug/l	5.00	ND	106	70-130	4	30	
Chloroform		0.10	0.50	ug/l	5.00	0.120	105	70-130	6	30	
Chloromethane		0.10	0.50	ug/l	5.00	0.120 ND	106	70-130	8	30	
cis-1,2-Dichloroethene		0.23	0.50	ug/l	5.00	0.333	99	70-130	1	30	
cis-1,3-Dichloropropene		0.12	0.50	ug/l	5.00	0.333 ND	97	70-130	3	30	
Dibromochloromethane		0.13	0.50	•	5.00			70-130	ა 1	30	
Dibromomethane			0.50	ug/l	5.00	ND ND	108 105	70-130		30	
Dichlorodifluoromethane (Freon 12)		0.20 0.15	0.50	ug/l ug/l	5.00	ND ND	1105	70-130	3 5	30	

FINAL REPORT

La Puente Valley County Water P.O Box 3136; 112 N.First St. La Puente, CA 91744 **Project Number:** PVOU IZ - SCAQMD Quarterly

Reported: 09/11/2025 15:38

Project Manager: Cesar Ortiz

Quality Control Results

Volatile Organic Compounds by P&T a	iliu GC/IVI	3 (COIII	iliueu)					0/556			
Analyte	Result	MDL	MRL	Units	Spike Level	Source Result	%RFC	%REC Limits	RPD	RPD Limit	Qualifie
Batch: W5H1390 - EPA 524.2 (Continued		WiDL	IVIICE	Omes	Level	Result	70INIE	Lilling	I I	Lilling	Quanne
Matrix Spike Dup (W5H1390-MSD1)	-	: 5H151	10-06	Droparo	d: 08/19/2!	5 Analyz	od: 08/3	20/25			
Di-isopropyl ether		1.1	2.0	ug/l	20.0	ND	93	70-130	4	30	
Ethyl tert-butyl ether	19.2	0.48	2.0	ug/l	20.0	ND	96	70-130	5	30	
Ethylbenzene	5.23	0.21	0.50	ug/l	5.00	ND	105	70-130	4	30	
Freon 113	5.41	1.1	5.0	ug/l	5.00	ND	108	70-130	8	30	
Hexachlorobutadiene	5.43	0.16	0.50	ug/l	5.00	ND	109	70-130	3	30	
Isopropylbenzene	5.21	0.18	0.50	ug/l	5.00	ND	104	70-130	1	30	
m,p-Xylene	5.58	0.33	0.50	ug/l	5.00	ND	112	70-130	2	30	
m-Dichlorobenzene	5.59	0.14	0.50	ug/l	5.00	ND	112	70-130	8.0	30	
Methyl tert-butyl ether (MTBE)	18.4	0.94	2.0	ug/l	20.0	ND	92	70-130	3	30	
Methylene chloride	4.88	0.30	0.50	ug/l	5.00	ND	98	70-130	7	30	
Naphthalene	5.45	0.35	0.50	ug/l	5.00	ND	109	70-130	4	30	
n-Butylbenzene	5.74	0.29	0.50	ug/l	5.00	ND	115	70-130	3	30	
n-Propylbenzene	5.66	0.18	0.50	ug/l	5.00	ND	113	70-130	0.3	30	
o-Dichlorobenzene	5.28	0.19	0.50	ug/l	5.00	ND	106	70-130	0.5	30	
o-Xylene	5.77	0.20	0.50	ug/l	5.00	ND	115	70-130	3	30	
p-Dichlorobenzene	5.86	0.18	0.50	ug/l	5.00	ND	117	70-130	2	30	
p-Isopropyltoluene	5.44	0.25	0.50	ug/l	5.00	ND	109	70-130	2	30	
sec-Butylbenzene	5.50	0.24	0.50	ug/l	5.00	ND	110	70-130	3	30	
Styrene	5.43	0.19	0.50	ug/l	5.00	ND	109	70-130	1	30	
Tert-amyl methyl ether	22.4	0.59	2.0	ug/l	20.0	ND	112	70-130	3	30	
tert-Butylbenzene	5.74	0.18	0.50	ug/l	5.00	ND	115	70-130	8.0	30	
Tetrachloroethene	32.9	0.18	0.50	ug/l	5.00	21.8	221	70-130	2	30	MS-0
Toluene	5.67	0.29	0.50	ug/l	5.00	ND	113	70-130	3	30	
trans-1,2-Dichloroethene	5.05	0.13	0.50	ug/l	5.00	ND	101	70-130	7	30	
trans-1,3-Dichloropropene	6.24	0.14	0.50	ug/l	5.00	ND	125	70-130	1	30	
Trichloroethene		0.18	0.50	ug/l	5.00	2.19	117	70-130	2	30	
Trichlorofluoromethane	5.62	0.18	0.50	ug/l	5.00	ND	112	70-130	6	30	
Vinyl chloride	5.78	0.18	0.50	ug/l	5.00	ND	116	70-130	13	30	
Surrogate(s)				"	50.0		404	70.400			
1,2-Dichlorobenzene-d4	52.2			ug/l	50.0		104	70-130			

FINAL REPORT

La Puente Valley County Water P.O Box 3136; 112 N.First St. La Puente, CA 91744 **Project Number:** PVOU IZ - SCAQMD Quarterly

Reported:

09/11/2025 15:38

Notes and Definitions

Definition
This analyte was found in the method blank, which was possibly contaminated during sample preparation. The batch was accepted since this analyte was either not detected or more than 10 times of the blank value for all the samples in the batch.
The spike recovery for this QC sample is outside of established control limits possibly due to sample matrix interference.
The spike recovery and/or RPD were outside acceptance limits for the MS and/or MSD due to possible matrix interference. The LCS and/or LCSD were within acceptance limits showing that the laboratory is in control and the data is acceptable.
Percent Recovery
Dilution
Method Detection Limit
Method Reporting Limit (MRL) is the minimum levels, concentrations, or quantities of a target variable (e.g., target analyte) that can be reported with a specified degree of confidence. The MRL is also known as Limit of Quantitation (LOQ)
NOT DETECTED at or above the Method Reporting Limit (MRL). If Method Detection Limit (MDL) is reported, then ND means not detected at or above the MDL.

Project Manager: Cesar Ortiz

RPD Relative Percent Difference

Source Sample that was matrix spiked or duplicated.

Any remaining sample(s) will be disposed of one month from the final report date unless other arrangements are made in advance.

All results are expressed on wet weight basis unless otherwise specified.

All samples collected by Weck Laboratories have been sampled in accordance to laboratory SOP Number MIS002.

FINAL REPORT

La Puente Valley County Water P.O Box 3136; 112 N.First St. La Puente. CA 91744 **Project Number:** PVOU IZ - SCAQMD Quarterly

Reported: 09/11/2025 15:38

Project Manager: Cesar Ortiz

Analyses Accreditation Summary

Analyte	CAS#	Not By ELAP-CA	Not By NELAP OR	Not ANAE
EPA 515.4 in Water				
3,5-Dichlorobenzoic acid	51-36-5	•		•
Dichloroprop	120-36-5	•		•
2,4,5-T	93-76-5	•		•
2,4-DB	94-82-6	•		•
DCPA	1861-32-1	•		•
Acifluorfen	50594-66-6			•
Chloramben	133-90-4	•		
EPA 521 in Water				
N-Nitrosodimethylamine	62-75-9	•	•	•
NDMA-d6		•		
EPA 524.2 in Water				
Chloromethane	74-87-3	•	•	•
Bromomethane	74-83-9			•
Chloroethane	75-00-3	•		•
Di-isopropyl ether	108-20-3			•
2-Butanone	78-93-3			•
2,2-Dichloropropane	594-20-7			•
Bromochloromethane	74-97-5	•		•
1,1-Dichloropropene	563-58-6	•		•
Dibromomethane	74-95-3			•
1,3-Dichloropropane	142-28-9	•		•
2-Hexanone	591-78-6			•
Bromobenzene	108-86-1	•		•
1,3,5-Trimethylbenzene	108-67-8			•
p-Isopropyltoluene	99-87-6	•	•	•
Hexachlorobutadiene	87-68-3	•		•
1,3-Dichloropropene, Total	542-75-6	•	•	•
Acetone	67-64-1	•		•
Acrylonitrile	107-13-1	•		•

This laboratory report may contain results for target analytes that are not currently certifiable by the California Environmental Laboratory Accreditation Program (ELAP). ELAP is the state agency that accredits environmental testing laboratories in California https://www.waterboards.ca.gov/drinking_water/certlic/labs/index.html. ELAP certification is required for laboratories that perform testing for regulatory purposes, such as drinking water, wastewater, hazardous waste, and ambient water https://www.waterboards.ca.gov/drinking_water/certlic/labs/apply.html. However, ELAP does not certify all analytes or methods that a laboratory may offer. Therefore, some of the target analytes in this report may not have been tested under ELAP-approved methods or quality control procedures. The results for these analytes are provided for informational purposes only and should not be usea for regulatory compliance or decision making. Please contact the laboratory if you have any questions or concerns about the report.

5G31008 Page 29 of 29

ATTACHMENT C

5

7

9

10

12

11

15

ANALYTICAL REPORT

PREPARED FOR

Attn: Cesar Ortiz La Puente Valley County Water District 112 North First Street La Puente, California 91744

Generated 8/11/2025 4:58:41 PM

JOB DESCRIPTION

PVOU SPECIAL SAMPLING

JOB NUMBER

380-164887-1

Eurofins Eaton Analytical Pomona 941 Corporate Center Drive Pomona CA 91768-2642

Eurofins Eaton Analytical Pomona

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Eaton Analytical, LLC Project Manager.

Compliance Statement

- 1. Laboratory is accredited in accordance with TNI 2016 Standards and ISO/IEC 17025:2017.
- 2. Laboratory certifies that the test results meet all TNI 2016 and ISO/IEC 17025:2017 requirements unless noted under the individual analysis
- 3. Test results relate only to the sample(s) tested.
- 4. This report shall not be reproduced except in full, without the written approval of the laboratory.
- 5. Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below. (DW, Water matrices)

Authorization

Generated 8/11/2025 4:58:41 PM

Authorized for release by MaryAnn Viernes, Project Manager MaryAnn.Viernes@et.eurofinsus.com (626)386-1100

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Detection Summary	6
Client Sample Results	8
Surrogate Summary	18
QC Sample Results	20
Lab Chronicle	25
Certification Summary	28
Method Summary	29
Sample Summary	30
Chain of Custody	31
Receint Checklists	35

Δ

5

7

0

10

12

12

7

Definitions/Glossary

Client: La Puente Valley County Water District Project/Site: PVOU SPECIAL SAMPLING Job ID: 380-164887-1

Qualifiers

GC VOA

*1 LCS/LCSD RPD exceeds control limits.

GC Semi VOA

Qualifier Qualifier Description

B Analyte was found in the associated method blank.

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
☼	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery

CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Eurofins Eaton Analytical Pomona

Case Narrative

Client: La Puente Valley County Water District

Project: PVOU SPECIAL SAMPLING

Job ID: 380-164887-1

Eurofins Eaton Analytical Pomona

Job ID: 380-164887-1

Job Narrative 380-164887-1

The analytical test results presented in this report meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page, unless otherwise noted. Data qualifiers and/or narrative comments are included to explain any exceptions, if applicable. Regulated compliance samples (e.g. SDWA, NPDES) must comply with associated agency requirements/permits.

- Matrix-specific batch QC (e.g., MS, MSD, SD) may not be reported when insufficient sample volume is available or when sitespecific QC samples are not submitted. In such cases, a Laboratory Control Sample Duplicate (LCSD) may be analyzed to provide precision data for the batch.
- For samples analyzed using surrogate and/or isotope dilution analytes, any recoveries falling outside of established acceptance criteria are re-prepared and/or re-analyzed to confirm results, unless the deviation is due to sample dilution or otherwise explained in the case narrative.

Receipt

The samples were received on 8/7/2025 3:12 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 25.0°C.

Gasoline Range Organics

Method 8015C GRO: The RPD of the laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) for analytical batch 570-609462 recovered outside control limits for the following analytes: Gasoline Range Organics (C4-C13).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Diesel Range Organics

Method 8015B DRO: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with preparation batch 570-609547. The laboratory control sample (LCS) was performed in duplicate (LCSD) to provide precision data for this batch.

Method: 8015B DRO

Method 8015B DRO: The method blank for preparation batch 570-609547 and analytical batch 570-609566 contained C23-C44 and C13-C44 above the method detection limit. This target analyte concentration was less than the reporting limit (RL) in the method blank; therefore, re-extraction and/or re-analysis of samples was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Page 5 of 36

Job ID: 380-164887-1

Client: La Puente Valley County Water District Project/Site: PVOU SPECIAL SAMPLING

Lab Sample ID: 380-164887-1

Client Sample ID: SP-1001 - INFLUENT (UPSTREAM OF EQ TANK)

Г	_										
	Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type	
	C13-C44	60	JB	250	43	ug/L	1	_	8015B	Total/NA	

raidiyio	rtoouit	Quannon			O.I.I.	D uo	_	Motinoa		
C13-C44	60	J B	250	43	ug/L	1	_	8015B	Total/NA	
Client Sample ID: SP-1301 - U			Lal	S	Sample ID:	380-164887-2				

No Detections.

Client Sample ID: SP-1501 - UV EFFLUENT	Lab Sample ID: 380-164887-3
	•

No Detections.

Client Sample ID: SP-1101A-1 LGAC LEAD VESSL 1	Lab Sample ID: 380-164887-4
FEFILIENT	

No Detections.

Client Sample ID: SP-1102A-1 LGAC LAG VESSEL 1	Lab Sample ID: 380-164887-5
EFFLUENT	

No Detections.

Client Sample ID: SP-1101B-2 LGAC LEAD VESSEL 2	Lab Sample ID: 380-164887-6
FFFI UENT	

No Detections.

Client Sample ID: SP-1102B-2 LGAC LAG VESSEL 2	Lab Sample ID: 380-164887-7
--	-----------------------------

EFFLUENT

No Detections.

Client Sample ID: SP-1101A-3 - LGAC LEAD VESSEL 3	Lab Sample ID: 380-164887-8
EEELIENT	

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method		rep Type
C13-C44	44	JB	260	43	ug/L	1		8015B	T	otal/NA

Client Sample ID: SP-1102A-3 LGAC LAG VESSEL 3	Lab Sample ID: 380-164887-9

EFFLUENT No Detections.

Client Sample ID: SP-1101B-4 LGAC LEAD VESSEL 4	Lab Sample ID: 380-164887-10
	2ab Gampio 121 000 101007 10

EFFLUENT No Detections.

Client Sample ID: SP-1102B-4 - LGAC LAG VESSEL 4	Lab Sample ID: 380-164887-11

CELUENT

EFFLUENI			
_			

No Detections.

Client Sample ID: SP-2158 - RO INFLUENT	Lab Sample ID: 380-164887-12

No Detections.

This Detection Summary does not include radiochemical test results.

Eurofins Eaton Analytical Pomona

Detection Summary

Client: La Puente Valley County Water District Project/Site: PVOU SPECIAL SAMPLING Job ID: 380-164887-1

Client Sample ID: SP-2305 - RO PERMEATE

Lab Sample ID: 380-164887-13

No Detections.

4

5

_

8

4.6

11

13

14

11

Client: La Puente Valley County Water District Project/Site: PVOU SPECIAL SAMPLING

Lab Sample ID: 380-164887-1

Job ID: 380-164887-1

Client Sample ID: SP-1001 - INFLUENT (UPSTREAM OF EQ

TANK)

Date Collected: 08/07/25 11:32 **Matrix: Water**

Date Received: 08/07/25 15:12

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C4-C5	ND		50	29	ug/L			08/09/25 22:30	1
Gasoline Range Organics (C4-C13)	ND	*1	50	29	ug/L			08/09/25 22:30	1
C6	ND		50	29	ug/L			08/09/25 22:30	1
C7	ND		50	29	ug/L			08/09/25 22:30	1
C8	ND		50	29	ug/L			08/09/25 22:30	1
C9 Range	ND		50	29	ug/L			08/09/25 22:30	1
C10-C11	ND		50	29	ug/L			08/09/25 22:30	1
C12-C13	ND		50	29	ug/L			08/09/25 22:30	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	82		20 - 144					08/09/25 22:30	1
4-Bromofluorobenzene (Surr) Method: SW846 8015B - Diesel F		(DRO) (GC						08/09/25 22:30	1
	Range Organics	(DRO) (GC Qualifier		MDL	Unit	<u>D</u>	Prepared	08/09/25 22:30 Analyzed	Dil Fac
Method: SW846 8015B - Diesel F	Range Organics		(3)	MDL 43	Unit ug/L	<u>D</u>	Prepared 08/10/25 14:46		
Method: SW846 8015B - Diesel F Analyte	Range Organics		RL			<u>D</u>	<u>.</u>	Analyzed	
Method: SW846 8015B - Diesel F Analyte C13-C14	Range Organics Result ND		RL	43 43	ug/L	<u>D</u>	08/10/25 14:46	Analyzed 08/10/25 20:50	
Method: SW846 8015B - Diesel F Analyte C13-C14 C15-C16	Range Organics Result ND ND		RL51	43 43 43	ug/L ug/L	<u>D</u>	08/10/25 14:46 08/10/25 14:46	Analyzed 08/10/25 20:50 08/10/25 20:50	
Method: SW846 8015B - Diesel F Analyte C13-C14 C15-C16 C17-C18	Range Organics Result ND ND ND		FL 51 51 51	43 43 43	ug/L ug/L ug/L	<u>D</u>	08/10/25 14:46 08/10/25 14:46 08/10/25 14:46	Analyzed 08/10/25 20:50 08/10/25 20:50 08/10/25 20:50	
Method: SW846 8015B - Diesel F Analyte C13-C14 C15-C16 C17-C18 C19-C20	Range Organics Result ND ND ND ND		FL 51 51 51	43 43 43 43	ug/L ug/L ug/L ug/L ug/L	<u> </u>	08/10/25 14:46 08/10/25 14:46 08/10/25 14:46 08/10/25 14:46	Analyzed 08/10/25 20:50 08/10/25 20:50 08/10/25 20:50 08/10/25 20:50	Dil Fac 1 1 1 1
Method: SW846 8015B - Diesel F Analyte C13-C14 C15-C16 C17-C18 C19-C20 C21-C22	Range Organics Result ND ND ND ND ND		FL 51 51 51 51	43 43 43 43 43 43	ug/L ug/L ug/L ug/L ug/L	<u>D</u>	08/10/25 14:46 08/10/25 14:46 08/10/25 14:46 08/10/25 14:46 08/10/25 14:46	Analyzed 08/10/25 20:50 08/10/25 20:50 08/10/25 20:50 08/10/25 20:50 08/10/25 20:50	Dil Fac 1 1 1 1 1 1
Method: SW846 8015B - Diesel F Analyte C13-C14 C15-C16 C17-C18 C19-C20 C21-C22 C23-C24	Range Organics Result ND ND ND ND ND ND ND		FL 51 51 51 51 51	43 43 43 43 43 43	ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u>	08/10/25 14:46 08/10/25 14:46 08/10/25 14:46 08/10/25 14:46 08/10/25 14:46 08/10/25 14:46	Analyzed 08/10/25 20:50 08/10/25 20:50 08/10/25 20:50 08/10/25 20:50 08/10/25 20:50 08/10/25 20:50	Dil Fac 1 1 1 1 1 1
Method: SW846 8015B - Diesel F Analyte C13-C14 C15-C16 C17-C18 C19-C20 C21-C22 C23-C24 C25-C28	Range Organics Result ND		FL 51 51 51 51 51 51	43 43 43 43 43 43 43	ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u>	08/10/25 14:46 08/10/25 14:46 08/10/25 14:46 08/10/25 14:46 08/10/25 14:46 08/10/25 14:46	Analyzed 08/10/25 20:50 08/10/25 20:50 08/10/25 20:50 08/10/25 20:50 08/10/25 20:50 08/10/25 20:50 08/10/25 20:50	Dil Fac 1 1 1 1 1 1

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 99 53 - 151 08/10/25 14:46 08/10/25 20:50 n-Octacosane (Surr)

51

51

250

250

43 ug/L

43 ug/L

43 ug/L

43 ug/L

08/10/25 14:46

08/10/25 14:46

08/10/25 14:46

08/10/25 14:46

08/10/25 20:50

08/10/25 20:50

08/10/25 20:50

08/10/25 20:50

Lab Sample ID: 380-164887-2

Matrix: Water

ND

ND

ND B

60 JB

Date Collected: 08/07/25 11:50 Date Received: 08/07/25 15:12

Client Sample ID: SP-1301 - UV INFLUENT

C41-C44

C13-C22

C23-C44

C13-C44

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C4-C5	ND		50	29	ug/L			08/09/25 23:27	1
Gasoline Range Organics (C4-C13)	ND	*1	50	29	ug/L			08/09/25 23:27	1
C6	ND		50	29	ug/L			08/09/25 23:27	1
C7	ND		50	29	ug/L			08/09/25 23:27	1
C8	ND		50	29	ug/L			08/09/25 23:27	1
C9 Range	ND		50	29	ug/L			08/09/25 23:27	1
C10-C11	ND		50	29	ug/L			08/09/25 23:27	1
C12-C13	ND		50	29	ug/L			08/09/25 23:27	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	81	- 	20 - 144			-		08/09/25 23:27	1

8/11/2025

Page 8 of 36

Client: La Puente Valley County Water District Job ID: 380-164887-1

Project/Site: PVOU SPECIAL SAMPLING

Client Sample ID: SP-1301 - UV INFLUENT

Lab Sample ID: 380-164887-2 Date Collected: 08/07/25 11:50 Matrix: Water

Date Received: 08/07/25 15:12

Method: SW846 8015B - Di	• • •	, , ,							
Analyte	Result Qu	ualifier	RL M	IDL	Unit	D	Prepared	Analyzed	Dil Fac
C13-C14	ND		51	43	ug/L		08/10/25 14:46	08/10/25 21:17	1
C15-C16	ND		51	43	ug/L		08/10/25 14:46	08/10/25 21:17	1
C17-C18	ND		51	43	ug/L		08/10/25 14:46	08/10/25 21:17	1
C19-C20	ND		51	43	ug/L		08/10/25 14:46	08/10/25 21:17	1
C21-C22	ND		51	43	ug/L		08/10/25 14:46	08/10/25 21:17	1
C23-C24	ND		51	43	ug/L		08/10/25 14:46	08/10/25 21:17	1
C25-C28	ND		51	43	ug/L		08/10/25 14:46	08/10/25 21:17	1
C29-C32	ND		51	43	ug/L		08/10/25 14:46	08/10/25 21:17	1
C33-C36	ND		51	43	ug/L		08/10/25 14:46	08/10/25 21:17	1
C37-C40	ND		51	43	ug/L		08/10/25 14:46	08/10/25 21:17	1
C41-C44	ND		51	43	ug/L		08/10/25 14:46	08/10/25 21:17	1
C13-C22	ND		51	43	ug/L		08/10/25 14:46	08/10/25 21:17	1
C23-C44	ND B		250	43	ug/L		08/10/25 14:46	08/10/25 21:17	1
C13-C44	ND B		250	43	ug/L		08/10/25 14:46	08/10/25 21:17	1
Surrogate	%Recovery Qu	ualifier Limits					Prepared	Analyzed	Dil Fac
n-Octacosane (Surr)	95	53 - 15	51				08/10/25 14:46	08/10/25 21:17	1

Client Sample ID: SP-1501 - UV EFFLUENT

Lab Sample ID: 380-164887-3 Date Collected: 08/07/25 11:52 **Matrix: Water**

Date Received: 08/07/25 15:12

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C4-C5	ND		50	29	ug/L			08/09/25 23:46	1
Gasoline Range Organics (C4-C13)	ND	*1	50	29	ug/L			08/09/25 23:46	1
C6	ND		50	29	ug/L			08/09/25 23:46	1
C7	ND		50	29	ug/L			08/09/25 23:46	1
C8	ND		50	29	ug/L			08/09/25 23:46	1
C9 Range	ND		50	29	ug/L			08/09/25 23:46	1
C10-C11	ND		50	29	ug/L			08/09/25 23:46	1
C12-C13	ND		50	29	ug/L			08/09/25 23:46	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	83		20 - 144			-		08/09/25 23:46	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C13-C14	ND		51	43	ug/L		08/10/25 14:46	08/10/25 21:44	1
C15-C16	ND		51	43	ug/L		08/10/25 14:46	08/10/25 21:44	1
C17-C18	ND		51	43	ug/L		08/10/25 14:46	08/10/25 21:44	1
C19-C20	ND		51	43	ug/L		08/10/25 14:46	08/10/25 21:44	1
C21-C22	ND		51	43	ug/L		08/10/25 14:46	08/10/25 21:44	1
C23-C24	ND		51	43	ug/L		08/10/25 14:46	08/10/25 21:44	1
C25-C28	ND		51	43	ug/L		08/10/25 14:46	08/10/25 21:44	1
C29-C32	ND		51	43	ug/L		08/10/25 14:46	08/10/25 21:44	1
C33-C36	ND		51	43	ug/L		08/10/25 14:46	08/10/25 21:44	1
C37-C40	ND		51	43	ug/L		08/10/25 14:46	08/10/25 21:44	1
C41-C44	ND		51	43	ug/L		08/10/25 14:46	08/10/25 21:44	1
C13-C22	ND		51	43	ug/L		08/10/25 14:46	08/10/25 21:44	1
C23-C44	ND	В	250	43	ug/L		08/10/25 14:46	08/10/25 21:44	

Eurofins Eaton Analytical Pomona

Page 9 of 36 8/11/2025

Job ID: 380-164887-1

Client: La Puente Valley County Water District Project/Site: PVOU SPECIAL SAMPLING

Client Sample ID: SP-1501 - UV EFFLUENT

Lab Sample ID: 380-164887-3 Date Collected: 08/07/25 11:52

Matrix: Water

Dil Fac

Date Received: 08/07/25 15:12

Method: SW846 8015B - Diesel Ra	nge Organics	nics (DRO) (GC) (Continued)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed
C13-C44	ND	В	250	43	ug/L		08/10/25 14:46	08/10/25 21:44
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed

Dil Fac %Recovery Qualifier Surrogate Prepared Analyzed 53 - 151 08/10/25 14:46 08/10/25 21:44 n-Octacosane (Surr) 96

Client Sample ID: SP-1101A-1 LGAC LEAD VESSL 1 Lab Sample ID: 380-164887-4

EFFLUENT

Date Collected: 08/07/25 14:35 **Matrix: Water**

Date Received: 08/07/25 15:12

4-Bromofluorobenzene (Surr)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C4-C5	ND		50	29	ug/L			08/10/25 00:05	1
Gasoline Range Organics (C4-C13)	ND	*1	50	29	ug/L			08/10/25 00:05	1
C6	ND		50	29	ug/L			08/10/25 00:05	1
C7	ND		50	29	ug/L			08/10/25 00:05	1
C8	ND		50	29	ug/L			08/10/25 00:05	1
C9 Range	ND		50	29	ug/L			08/10/25 00:05	1
C10-C11	ND		50	29	ug/L			08/10/25 00:05	1
C12-C13	ND		50	29	ug/L			08/10/25 00:05	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

20 - 144

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C13-C14	ND		52	44	ug/L		08/10/25 14:46	08/10/25 22:11	1
C15-C16	ND		52	44	ug/L		08/10/25 14:46	08/10/25 22:11	1
C17-C18	ND		52	44	ug/L		08/10/25 14:46	08/10/25 22:11	1
C19-C20	ND		52	44	ug/L		08/10/25 14:46	08/10/25 22:11	1
C21-C22	ND		52	44	ug/L		08/10/25 14:46	08/10/25 22:11	1
C23-C24	ND		52	44	ug/L		08/10/25 14:46	08/10/25 22:11	1
C25-C28	ND		52	44	ug/L		08/10/25 14:46	08/10/25 22:11	1
C29-C32	ND		52	44	ug/L		08/10/25 14:46	08/10/25 22:11	1
C33-C36	ND		52	44	ug/L		08/10/25 14:46	08/10/25 22:11	1
C37-C40	ND		52	44	ug/L		08/10/25 14:46	08/10/25 22:11	1
C41-C44	ND		52	44	ug/L		08/10/25 14:46	08/10/25 22:11	1
C13-C22	ND		52	44	ug/L		08/10/25 14:46	08/10/25 22:11	1
C23-C44	ND	В	260	44	ug/L		08/10/25 14:46	08/10/25 22:11	1
C13-C44	ND	В	260	44	ug/L		08/10/25 14:46	08/10/25 22:11	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
n-Octacosane (Surr)	89		53 - 151				08/10/25 14:46	08/10/25 22:11	1

08/10/25 00:05

Client: La Puente Valley County Water District

Job ID: 380-164887-1 Project/Site: PVOU SPECIAL SAMPLING

Client Sample ID: SP-1102A-1 LGAC LAG VESSEL 1

EFFLUENT

Date Collected: 08/07/25 14:37 **Matrix: Water**

Date Received: 08/07/25 15:12

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C4-C5	ND		50	29	ug/L			08/10/25 00:24	1
Gasoline Range Organics (C4-C13)	ND	*1	50	29	ug/L			08/10/25 00:24	1
C6	ND		50	29	ug/L			08/10/25 00:24	1
C7	ND		50	29	ug/L			08/10/25 00:24	1
C8	ND		50	29	ug/L			08/10/25 00:24	1
C9 Range	ND		50	29	ug/L			08/10/25 00:24	1
C10-C11	ND		50	29	ug/L			08/10/25 00:24	1
C12-C13	ND		50	29	ug/L			08/10/25 00:24	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	87		20 - 144					08/10/25 00:24	1
	87 Range Organics	<u> </u>	20 - 144	MDL	Unit	D	Prepared		1 Dil Fac
4-Bromofluorobenzene (Surr) Method: SW846 8015B - Diesel F	87 Range Organics	s (DRO) (GC	20 - 144	MDL 43	Unit ug/L	<u>D</u>		08/10/25 00:24	
4-Bromofluorobenzene (Surr) Method: SW846 8015B - Diesel F Analyte	87 Range Organics Result	s (DRO) (GC	20 - 144) RL			<u>D</u>	Prepared	08/10/25 00:24 Analyzed	Dil Fac
4-Bromofluorobenzene (Surr) Method: SW846 8015B - Diesel F Analyte C13-C14	Range Organics Result ND	s (DRO) (GC	20 - 144) 	43 43	ug/L	<u> </u>	Prepared 08/10/25 14:46	08/10/25 00:24 Analyzed 08/10/25 22:39	Dil Fac
4-Bromofluorobenzene (Surr) Method: SW846 8015B - Diesel F Analyte C13-C14 C15-C16	Range Organics Result ND ND	s (DRO) (GC	20 - 144) RL 51	43 43 43	ug/L ug/L	<u>D</u>	Prepared 08/10/25 14:46 08/10/25 14:46	08/10/25 00:24 Analyzed 08/10/25 22:39 08/10/25 22:39	Dil Fac
4-Bromofluorobenzene (Surr) Method: SW846 8015B - Diesel F Analyte C13-C14 C15-C16 C17-C18	Range Organics Result ND ND ND	s (DRO) (GC	20 - 144) RL 51 51 51	43 43 43	ug/L ug/L ug/L ug/L	<u>D</u>	Prepared 08/10/25 14:46 08/10/25 14:46 08/10/25 14:46	08/10/25 00:24 Analyzed 08/10/25 22:39 08/10/25 22:39 08/10/25 22:39	Dil Fac
4-Bromofluorobenzene (Surr) Method: SW846 8015B - Diesel F Analyte C13-C14 C15-C16 C17-C18 C19-C20	Range Organics Result ND ND ND ND	s (DRO) (GC	20 - 144) RL 51 51 51 51	43 43 43 43	ug/L ug/L ug/L ug/L ug/L	<u>D</u>	Prepared 08/10/25 14:46 08/10/25 14:46 08/10/25 14:46 08/10/25 14:46	Analyzed 08/10/25 22:39 08/10/25 22:39 08/10/25 22:39 08/10/25 22:39 08/10/25 22:39	Dil Fac
4-Bromofluorobenzene (Surr) Method: SW846 8015B - Diesel F Analyte C13-C14 C15-C16 C17-C18 C19-C20 C21-C22	Range Organics Result ND ND ND ND ND ND	s (DRO) (GC	20 - 144) RL 51 51 51 51 51	43 43 43 43 43 43	ug/L ug/L ug/L ug/L ug/L	<u>D</u>	Prepared 08/10/25 14:46 08/10/25 14:46 08/10/25 14:46 08/10/25 14:46 08/10/25 14:46	Analyzed 08/10/25 20:39 08/10/25 22:39 08/10/25 22:39 08/10/25 22:39 08/10/25 22:39	Dil Fac 1 1 1 1 1
4-Bromofluorobenzene (Surr) Method: SW846 8015B - Diesel F Analyte C13-C14 C15-C16 C17-C18 C19-C20 C21-C22 C23-C24	Range Organics Result ND	s (DRO) (GC	20 - 144) RL 51 51 51 51 51 51	43 43 43 43 43 43	ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u>	Prepared 08/10/25 14:46 08/10/25 14:46 08/10/25 14:46 08/10/25 14:46 08/10/25 14:46	Analyzed 08/10/25 22:39 08/10/25 22:39 08/10/25 22:39 08/10/25 22:39 08/10/25 22:39 08/10/25 22:39	Dil Fac 1 1 1 1 1 1 1
4-Bromofluorobenzene (Surr) Method: SW846 8015B - Diesel F Analyte C13-C14 C15-C16 C17-C18 C19-C20 C21-C22 C23-C24 C25-C28	Range Organics Result ND	s (DRO) (GC	20 - 144) RL 51 51 51 51 51 51 51	43 43 43 43 43 43 43	ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u>	Prepared 08/10/25 14:46 08/10/25 14:46 08/10/25 14:46 08/10/25 14:46 08/10/25 14:46 08/10/25 14:46	Analyzed 08/10/25 22:39 08/10/25 22:39 08/10/25 22:39 08/10/25 22:39 08/10/25 22:39 08/10/25 22:39 08/10/25 22:39	Dil Fac 1 1 1 1 1 1 1 1 1
### A-Bromofluorobenzene (Surr) Method: SW846 8015B - Diesel F	Range Organics Result ND	s (DRO) (GC	20 - 144) RL 51 51 51 51 51 51 51 51	43 43 43 43 43 43 43 43	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u>	Prepared 08/10/25 14:46 08/10/25 14:46 08/10/25 14:46 08/10/25 14:46 08/10/25 14:46 08/10/25 14:46 08/10/25 14:46	Analyzed 08/10/25 22:39 08/10/25 22:39 08/10/25 22:39 08/10/25 22:39 08/10/25 22:39 08/10/25 22:39 08/10/25 22:39 08/10/25 22:39 08/10/25 22:39	Dil Fac 1 1 1 1 1 1 1 1 1 1 1 1

Surrogate Qualifier Limits Prepared Analyzed Dil Fac %Recovery 78 53 - 151 08/10/25 14:46 08/10/25 22:39 n-Octacosane (Surr)

51

260

260

43 ug/L

43 ug/L

43 ug/L

08/10/25 14:46

08/10/25 14:46

08/10/25 14:46

08/10/25 22:39

08/10/25 22:39

08/10/25 22:39

Lab Sample ID: 380-164887-6

Client Sample ID: SP-1101B-2 LGAC LEAD VESSEL 2

ND

ND B

ND B

EFFLUENT

C13-C22

C23-C44

C13-C44

Date Collected: 08/07/25 14:39 **Matrix: Water**

Date Received: 08/07/25 15:12

Analyte	Result C	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C4-C5	ND		50	29	ug/L			08/10/25 00:43	1
Gasoline Range Organics (C4-C13)	ND *	1	50	29	ug/L			08/10/25 00:43	1
C6	ND		50	29	ug/L			08/10/25 00:43	1
C7	ND		50	29	ug/L			08/10/25 00:43	1
C8	ND		50	29	ug/L			08/10/25 00:43	1
C9 Range	ND		50	29	ug/L			08/10/25 00:43	1
C10-C11	ND		50	29	ug/L			08/10/25 00:43	1
C12-C13	ND		50	29	ug/L			08/10/25 00:43	1

Page 11 of 36

Job ID: 380-164887-1

Lab Sample ID: 380-164887-6

Client: La Puente Valley County Water District Project/Site: PVOU SPECIAL SAMPLING

Client Sample ID: SP-1101B-2 LGAC LEAD VESSEL 2

EFFLUENT

Date Collected: 08/07/25 14:39 Matrix: Water

Date Received: 08/07/25 15:12

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	86		20 - 144					08/10/25 00:43	1
Method: SW846 8015B - Diese	I Range Organics	s (DRO) (GC	;)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C13-C14	MD		51	43	ug/L		08/10/25 14:46	08/10/25 23:06	1
C15-C16	ND		51	43	ug/L		08/10/25 14:46	08/10/25 23:06	1
C17-C18	ND		51	43	ug/L		08/10/25 14:46	08/10/25 23:06	1
C19-C20	ND		51	43	ug/L		08/10/25 14:46	08/10/25 23:06	1
C21-C22	ND		51	43	ug/L		08/10/25 14:46	08/10/25 23:06	1
C23-C24	ND		51	43	ug/L		08/10/25 14:46	08/10/25 23:06	1
C25-C28	ND		51	43	ug/L		08/10/25 14:46	08/10/25 23:06	1
C29-C32	ND		51	43	ug/L		08/10/25 14:46	08/10/25 23:06	1
C33-C36	ND		51	43	ug/L		08/10/25 14:46	08/10/25 23:06	1
C37-C40	ND		51	43	ug/L		08/10/25 14:46	08/10/25 23:06	1
C41-C44	ND		51	43	ug/L		08/10/25 14:46	08/10/25 23:06	1
C13-C22	ND		51	43	ug/L		08/10/25 14:46	08/10/25 23:06	1
C23-C44	ND	В	260	43	ug/L		08/10/25 14:46	08/10/25 23:06	1
C13-C44	ND	В	260	43	ug/L		08/10/25 14:46	08/10/25 23:06	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
n-Octacosane (Surr)	81		 53 ₋ 151				08/10/25 14:46	08/10/25 23:06	1

Client Sample ID: SP-1102B-2 LGAC LAG VESSEL 2

EFFLUENT

Date Collected: 08/07/25 14:41

Date Received: 08/07/25 15:12

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C4-C5	ND		50	29	ug/L			08/10/25 01:02	1
Gasoline Range Organics (C4-C13)	ND	*1	50	29	ug/L			08/10/25 01:02	1
C6	ND		50	29	ug/L			08/10/25 01:02	1
C7	ND		50	29	ug/L			08/10/25 01:02	1
C8	ND		50	29	ug/L			08/10/25 01:02	1
C9 Range	ND		50	29	ug/L			08/10/25 01:02	1
C10-C11	ND		50	29	ug/L			08/10/25 01:02	1
C12-C13	ND		50	29	ug/L			08/10/25 01:02	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	89		20 - 144			_		08/10/25 01:02	1

Method: SW846 8015B - Di	esel Range Organics	s (DRO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C13-C14	ND		51	43	ug/L		08/10/25 14:46	08/10/25 23:33	1
C15-C16	ND		51	43	ug/L		08/10/25 14:46	08/10/25 23:33	1
C17-C18	ND		51	43	ug/L		08/10/25 14:46	08/10/25 23:33	1
C19-C20	ND		51	43	ug/L		08/10/25 14:46	08/10/25 23:33	1
C21-C22	ND		51	43	ug/L		08/10/25 14:46	08/10/25 23:33	1
C23-C24	ND		51	43	ug/L		08/10/25 14:46	08/10/25 23:33	1
C25-C28	ND		51	43	ug/L		08/10/25 14:46	08/10/25 23:33	1

Eurofins Eaton Analytical Pomona

Page 12 of 36

Matrix: Water

Client: La Puente Valley County Water District

Job ID: 380-164887-1 Project/Site: PVOU SPECIAL SAMPLING

Client Sample ID: SP-1102B-2 LGAC LAG VESSEL 2

EFFLUENT

Date Collected: 08/07/25 14:41 Matrix: Water

Date Received: 08/07/25 15:12

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C29-C32	ND		51	43	ug/L		08/10/25 14:46	08/10/25 23:33	1
C33-C36	ND		51	43	ug/L		08/10/25 14:46	08/10/25 23:33	1
C37-C40	ND		51	43	ug/L		08/10/25 14:46	08/10/25 23:33	1
C41-C44	ND		51	43	ug/L		08/10/25 14:46	08/10/25 23:33	1
C13-C22	ND		51	43	ug/L		08/10/25 14:46	08/10/25 23:33	1
C23-C44	ND	В	250	43	ug/L		08/10/25 14:46	08/10/25 23:33	1
C13-C44	ND	В	250	43	ug/L		08/10/25 14:46	08/10/25 23:33	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
n-Octacosane (Surr)	85		<u>53 - 151</u>				08/10/25 14:46	08/10/25 23:33	1

Client Sample ID: SP-1101A-3 - LGAC LEAD VESSEL 3

EFFLUENT

Date Collected: 08/07/25 11:37 **Matrix: Water**

Date Received: 08/07/25 15:12

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C4-C5	ND		50	29	ug/L			08/10/25 01:21	1
Gasoline Range Organics (C4-C13)	ND	*1	50	29	ug/L			08/10/25 01:21	1
C6	ND		50	29	ug/L			08/10/25 01:21	1
C7	ND		50	29	ug/L			08/10/25 01:21	1
C8	ND		50	29	ug/L			08/10/25 01:21	1
C9 Range	ND		50	29	ug/L			08/10/25 01:21	1
C10-C11	ND		50	29	ug/L			08/10/25 01:21	1
C12-C13	ND		50	29	ug/L			08/10/25 01:21	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	87		20 - 144					08/10/25 01:21	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C13-C14	ND		51	43	ug/L		08/10/25 14:46	08/11/25 00:00	1
C15-C16	ND		51	43	ug/L		08/10/25 14:46	08/11/25 00:00	1
C17-C18	ND		51	43	ug/L		08/10/25 14:46	08/11/25 00:00	1
C19-C20	ND		51	43	ug/L		08/10/25 14:46	08/11/25 00:00	1
C21-C22	ND		51	43	ug/L		08/10/25 14:46	08/11/25 00:00	1
C23-C24	ND		51	43	ug/L		08/10/25 14:46	08/11/25 00:00	1
C25-C28	ND		51	43	ug/L		08/10/25 14:46	08/11/25 00:00	1
C29-C32	ND		51	43	ug/L		08/10/25 14:46	08/11/25 00:00	1
C33-C36	ND		51	43	ug/L		08/10/25 14:46	08/11/25 00:00	1
C37-C40	ND		51	43	ug/L		08/10/25 14:46	08/11/25 00:00	1
C41-C44	ND		51	43	ug/L		08/10/25 14:46	08/11/25 00:00	1
C13-C22	ND		51	43	ug/L		08/10/25 14:46	08/11/25 00:00	1
C23-C44	ND	В	260	43	ug/L		08/10/25 14:46	08/11/25 00:00	1
C13-C44	44	JB	260	43	ug/L		08/10/25 14:46	08/11/25 00:00	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
n-Octacosane (Surr)	90		53 - 151				08/10/25 14:46	08/11/25 00:00	1

Eurofins Eaton Analytical Pomona

Page 13 of 36

Lab Sample ID: 380-164887-7

Client: La Puente Valley County Water District

Project/Site: PVOU SPECIAL SAMPLING

Client Sample ID: SP-1102A-3 LGAC LAG VESSEL 3

EFFLUENT

Date Collected: 08/07/25 11:39 Matrix: Water

Date Received: 08/07/25 15:12

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C4-C5	ND		50	29	ug/L			08/10/25 01:40	1
Gasoline Range Organics (C4-C13)	ND	*1	50	29	ug/L			08/10/25 01:40	1
C6	ND		50	29	ug/L			08/10/25 01:40	1
C7	ND		50	29	ug/L			08/10/25 01:40	1
C8	ND		50	29	ug/L			08/10/25 01:40	1
C9 Range	ND		50	29	ug/L			08/10/25 01:40	1
C10-C11	ND		50	29	ug/L			08/10/25 01:40	1
C12-C13	ND		50	29	ug/L			08/10/25 01:40	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	85		20 - 144					08/10/25 01:40	1
- Method: SW846 8015B - Diesel R	Range Organics	s (DRO) (GC	3)						
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C13-C14	ND		51	44	ug/L		08/10/25 14:46	08/11/25 00:27	1
0.15.010									

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C13-C14	ND		51	44	ug/L		08/10/25 14:46	08/11/25 00:27	1
C15-C16	ND		51	44	ug/L		08/10/25 14:46	08/11/25 00:27	1
C17-C18	ND		51	44	ug/L		08/10/25 14:46	08/11/25 00:27	1
C19-C20	ND		51	44	ug/L		08/10/25 14:46	08/11/25 00:27	1
C21-C22	ND		51	44	ug/L		08/10/25 14:46	08/11/25 00:27	1
C23-C24	ND		51	44	ug/L		08/10/25 14:46	08/11/25 00:27	1
C25-C28	ND		51	44	ug/L		08/10/25 14:46	08/11/25 00:27	1
C29-C32	ND		51	44	ug/L		08/10/25 14:46	08/11/25 00:27	1
C33-C36	ND		51	44	ug/L		08/10/25 14:46	08/11/25 00:27	1
C37-C40	ND		51	44	ug/L		08/10/25 14:46	08/11/25 00:27	1
C41-C44	ND		51	44	ug/L		08/10/25 14:46	08/11/25 00:27	1
C13-C22	ND		51	44	ug/L		08/10/25 14:46	08/11/25 00:27	1
C23-C44	ND	В	260	44	ug/L		08/10/25 14:46	08/11/25 00:27	1
C13-C44	ND	В	260	44	ug/L		08/10/25 14:46	08/11/25 00:27	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
n-Octacosane (Surr)	95		53 - 151				08/10/25 14:46	08/11/25 00:27	1

Client Sample ID: SP-1101B-4 LGAC LEAD VESSEL 4

EFFLUENT

Date Collected: 08/07/25 11:43 Matrix: Water

Date Received: 08/07/25 15:12

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C4-C5	ND	50	29	ug/L			08/10/25 02:18	1
Gasoline Range Organics (C4-C13)	ND *1	50	29	ug/L			08/10/25 02:18	1
C6	ND	50	29	ug/L			08/10/25 02:18	1
C7	ND	50	29	ug/L			08/10/25 02:18	1
C8	ND	50	29	ug/L			08/10/25 02:18	1
C9 Range	ND	50	29	ug/L			08/10/25 02:18	1
C10-C11	ND	50	29	ug/L			08/10/25 02:18	1
C12-C13	ND	50	29	ug/L			08/10/25 02:18	1

Lab Sample ID: 380-164887-10

Page 14 of 36

Job ID: 380-164887-1

Job ID: 380-164887-1

Lab Sample ID: 380-164887-10

Lab Sample ID: 380-164887-11

Client: La Puente Valley County Water District Project/Site: PVOU SPECIAL SAMPLING

Client Sample ID: SP-1101B-4 LGAC LEAD VESSEL 4

EFFLUENT

Date Collected: 08/07/25 11:43 Matrix: Water

Date Received: 08/07/25 15:12

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	81		20 - 144					08/10/25 02:18	1
Method: SW846 8015B - Diese	I Range Organics	s (DRO) (GC	;)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C13-C14	ND		51	43	ug/L		08/10/25 14:46	08/11/25 00:54	1
C15-C16	ND		51	43	ug/L		08/10/25 14:46	08/11/25 00:54	1
C17-C18	ND		51	43	ug/L		08/10/25 14:46	08/11/25 00:54	1
C19-C20	ND		51	43	ug/L		08/10/25 14:46	08/11/25 00:54	1
C21-C22	ND		51	43	ug/L		08/10/25 14:46	08/11/25 00:54	1
C23-C24	ND		51	43	ug/L		08/10/25 14:46	08/11/25 00:54	1
C25-C28	ND		51	43	ug/L		08/10/25 14:46	08/11/25 00:54	1
C29-C32	ND		51	43	ug/L		08/10/25 14:46	08/11/25 00:54	1
C33-C36	ND		51	43	ug/L		08/10/25 14:46	08/11/25 00:54	1
C37-C40	ND		51	43	ug/L		08/10/25 14:46	08/11/25 00:54	1
C41-C44	ND		51	43	ug/L		08/10/25 14:46	08/11/25 00:54	1
C13-C22	ND		51	43	ug/L		08/10/25 14:46	08/11/25 00:54	1
C23-C44	ND	В	260	43	ug/L		08/10/25 14:46	08/11/25 00:54	1
C13-C44	ND	В	260	43	ug/L		08/10/25 14:46	08/11/25 00:54	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
n-Octacosane (Surr)	91						08/10/25 14:46	08/11/25 00:54	

Client Sample ID: SP-1102B-4 - LGAC LAG VESSEL 4

EFFLUENT

Date Collected: 08/07/25 11:46 Matrix: Water

Date Received: 08/07/25 15:12

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C4-C5	ND		50	29	ug/L			08/10/25 02:37	1
Gasoline Range Organics (C4-C13)	ND	*1	50	29	ug/L			08/10/25 02:37	1
C6	ND		50	29	ug/L			08/10/25 02:37	1
C7	ND		50	29	ug/L			08/10/25 02:37	1
C8	ND		50	29	ug/L			08/10/25 02:37	1
C9 Range	ND		50	29	ug/L			08/10/25 02:37	1
C10-C11	ND		50	29	ug/L			08/10/25 02:37	1
C12-C13	ND		50	29	ug/L			08/10/25 02:37	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	85		20 - 144			_		08/10/25 02:37	1

Method: SW846 8015B - D	iesel Range Organics	(DRO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C13-C14	ND		51	43	ug/L		08/10/25 14:46	08/11/25 01:21	1
C15-C16	ND		51	43	ug/L		08/10/25 14:46	08/11/25 01:21	1
C17-C18	ND		51	43	ug/L		08/10/25 14:46	08/11/25 01:21	1
C19-C20	ND		51	43	ug/L		08/10/25 14:46	08/11/25 01:21	1
C21-C22	ND		51	43	ug/L		08/10/25 14:46	08/11/25 01:21	1
C23-C24	ND		51	43	ug/L		08/10/25 14:46	08/11/25 01:21	1
C25-C28	ND		51	43	ug/L		08/10/25 14:46	08/11/25 01:21	1

Eurofins Eaton Analytical Pomona

Page 15 of 36

Client: La Puente Valley County Water District Job ID: 380-164887-1 Project/Site: PVOU SPECIAL SAMPLING

Client Sample ID: SP-1102B-4 - LGAC LAG VESSEL 4

EFFLUENT

Date Collected: 08/07/25 11:46 Matrix: Water

Date Received: 08/07/25 15:12

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C29-C32	ND		51	43	ug/L		08/10/25 14:46	08/11/25 01:21	1
C33-C36	ND		51	43	ug/L		08/10/25 14:46	08/11/25 01:21	1
C37-C40	ND		51	43	ug/L		08/10/25 14:46	08/11/25 01:21	1
C41-C44	ND		51	43	ug/L		08/10/25 14:46	08/11/25 01:21	1
C13-C22	ND		51	43	ug/L		08/10/25 14:46	08/11/25 01:21	1
C23-C44	ND	В	250	43	ug/L		08/10/25 14:46	08/11/25 01:21	1
C13-C44	ND	В	250	43	ug/L		08/10/25 14:46	08/11/25 01:21	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
n-Octacosane (Surr)	90		<u>53 - 151</u>				08/10/25 14:46	08/11/25 01:21	1

Client Sample ID: SP-2158 - RO INFLUENT

Lab Sample ID: 380-164887-12 Date Collected: 08/07/25 11:55 Matrix: Water

Date Received: 08/07/25 15:12

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C4-C5	ND		50	29	ug/L			08/10/25 02:56	1
Gasoline Range Organics (C4-C13)	ND	*1	50	29	ug/L			08/10/25 02:56	1
C6	ND		50	29	ug/L			08/10/25 02:56	1
C7	ND		50	29	ug/L			08/10/25 02:56	1
C8	ND		50	29	ug/L			08/10/25 02:56	1
C9 Range	ND		50	29	ug/L			08/10/25 02:56	1
C10-C11	ND		50	29	ug/L			08/10/25 02:56	1
C12-C13	ND		50	29	ug/L			08/10/25 02:56	1

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	85	20 - 144		08/10/25 02:56	1

- -									
Method: SW846 8015B - D Analyte	• •	S (DRO) (GC Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
C13-C14	ND		50	43	ug/L		08/10/25 14:46	08/11/25 01:48	
C15-C16	ND		50	43	ug/L		08/10/25 14:46	08/11/25 01:48	
C17-C18	ND		50	43	ug/L		08/10/25 14:46	08/11/25 01:48	1
C19-C20	ND		50	43	ug/L		08/10/25 14:46	08/11/25 01:48	1
C21-C22	ND		50	43	ug/L		08/10/25 14:46	08/11/25 01:48	1
C23-C24	ND		50	43	ug/L		08/10/25 14:46	08/11/25 01:48	1
C25-C28	ND		50	43	ug/L		08/10/25 14:46	08/11/25 01:48	1
C29-C32	ND		50	43	ug/L		08/10/25 14:46	08/11/25 01:48	1
C33-C36	ND		50	43	ug/L		08/10/25 14:46	08/11/25 01:48	1
C37-C40	ND		50	43	ug/L		08/10/25 14:46	08/11/25 01:48	1
C41-C44	ND		50	43	ug/L		08/10/25 14:46	08/11/25 01:48	1
C13-C22	ND		50	43	ug/L		08/10/25 14:46	08/11/25 01:48	1
C23-C44	ND	В	250	43	ug/L		08/10/25 14:46	08/11/25 01:48	1
C13-C44	ND	В	250	43	ug/L		08/10/25 14:46	08/11/25 01:48	,
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
n-Octacosane (Surr)	89		53 - 151				08/10/25 14:46	08/11/25 01:48	1

Page 16 of 36

Lab Sample ID: 380-164887-11

Client Sample Results

Client: La Puente Valley County Water District Project/Site: PVOU SPECIAL SAMPLING

Lab Sample ID: 380-164887-13

Matrix: Water

Job ID: 380-164887-1

Client Sample ID: SP-2305 - RO PERMEATE

Date Collected: 08/07/25 11:57 Date Received: 08/07/25 15:12

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C4-C5	ND		50	29	ug/L			08/10/25 03:14	1
Gasoline Range Organics (C4-C13)	ND	*1	50	29	ug/L			08/10/25 03:14	1
C6	ND		50	29	ug/L			08/10/25 03:14	1
C7	ND		50	29	ug/L			08/10/25 03:14	1
C8	ND		50	29	ug/L			08/10/25 03:14	1
C9 Range	ND		50	29	ug/L			08/10/25 03:14	1
C10-C11	ND		50	29	ug/L			08/10/25 03:14	1
C12-C13	ND		50	29	ug/L			08/10/25 03:14	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	84		20 - 144			-		08/10/25 03:14	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C13-C14	ND		51	43	ug/L		08/10/25 14:46	08/11/25 02:15	1
C15-C16	ND		51	43	ug/L		08/10/25 14:46	08/11/25 02:15	1
C17-C18	ND		51	43	ug/L		08/10/25 14:46	08/11/25 02:15	1
C19-C20	ND		51	43	ug/L		08/10/25 14:46	08/11/25 02:15	1
C21-C22	ND		51	43	ug/L		08/10/25 14:46	08/11/25 02:15	1
C23-C24	ND		51	43	ug/L		08/10/25 14:46	08/11/25 02:15	1
C25-C28	ND		51	43	ug/L		08/10/25 14:46	08/11/25 02:15	1
C29-C32	ND		51	43	ug/L		08/10/25 14:46	08/11/25 02:15	1
C33-C36	ND		51	43	ug/L		08/10/25 14:46	08/11/25 02:15	1
C37-C40	ND		51	43	ug/L		08/10/25 14:46	08/11/25 02:15	1
C41-C44	ND		51	43	ug/L		08/10/25 14:46	08/11/25 02:15	1
C13-C22	ND		51	43	ug/L		08/10/25 14:46	08/11/25 02:15	1
C23-C44	ND	В	250	43	ug/L		08/10/25 14:46	08/11/25 02:15	1
C13-C44	ND	В	250	43	ug/L		08/10/25 14:46	08/11/25 02:15	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
n-Octacosane (Surr)	87		53 - 151				08/10/25 14:46	08/11/25 02:15	1

Job ID: 380-164887-1

Client: La Puente Valley County Water District Project/Site: PVOU SPECIAL SAMPLING

Method: 8015C - Gasoline Range Organics (GRO) (GC)

Matrix: Water Prep Type: Total/NA

			Percent Surrogate Recovery (Acceptance Limits
		BFB1	
ab Sample ID	Client Sample ID	(20-144)	
80-164887-1	SP-1001 - INFLUENT (UPSTREAM	82	
880-164887-1 MS	SP-1001 - INFLUENT	64	
000 404007 4 NOD	(UPSTREAM OF EQ TANK)	87	
380-164887-1 MSD	SP-1001 - INFLUENT	87	
000 464007 0	(UPSTREAM OF EQ TANK)	81	
880-164887-2	SP-1301 - UV INFLUENT		
80-164887-3	SP-1501 - UV EFFLUENT	83	
380-164887-4	SP-1101A-1 LGAC LEAD	82	
	VESSL 1 EFFLUENT		
880-164887-5	SP-1102A-1 LGAC LAG	87	
	VESSEL 1 EFFLUENT		
880-164887-6	SP-1101B-2 LGAC LEAD	86	
	VESSEL 2 EFFLUENT		
880-164887-7	SP-1102B-2 LGAC LAG	89	
	VESSEL 2 EFFLUENT		
80-164887-8	SP-1101A-3 - LGAC LEAD	87	
	VESSEL 3 EFFLUENT		
80-164887-9	SP-1102A-3 LGAC LAG	85	
	VESSEL 3 EFFLUENT		
80-164887-10	SP-1101B-4 LGAC LEAD	81	
	VESSEL 4 EFFLUENT		
380-164887-11	SP-1102B-4 - LGAC LAG	85	
	VESSEL 4 EFFLUENT		
80-164887-12	SP-2158 - RO INFLUENT	85	
880-164887-13	SP-2305 - RO PERMEATE	84	
CS 570-609462/33	Lab Control Sample	59	
.CSD 570-609462/34	Lab Control Sample Dup	87	
MB 570-609462/35	Method Blank	81	
Surrogate Legend			

Method: 8015B - Diesel Range Organics (DRO) (GC)

Matrix: Water Prep Type: Total/NA

			Percent Surrogate Recovery (Acceptance Limits)
		OTCSN1	
Lab Sample ID	Client Sample ID	(53-151)	
380-164887-1	SP-1001 - INFLUENT (UPSTREAM	99	
380-164887-2	SP-1301 - UV INFLUENT	95	
380-164887-3	SP-1501 - UV EFFLUENT	96	
380-164887-4	SP-1101A-1 LGAC LEAD	89	
	VESSL 1 EFFLUENT		
380-164887-5	SP-1102A-1 LGAC LAG	78	
	VESSEL 1 EFFLUENT		
380-164887-6	SP-1101B-2 LGAC LEAD	81	
	VESSEL 2 EFFLUENT		
380-164887-7	SP-1102B-2 LGAC LAG	85	
	VESSEL 2 EFFLUENT		
380-164887-8	SP-1101A-3 - LGAC LEAD	90	
	VESSEL 3 EFFLUENT		
380-164887-9	SP-1102A-3 LGAC LAG	95	
	VESSEL 3 EFFLUENT		
380-164887-10	SP-1101B-4 LGAC LEAD	91	
	VESSEL 4 EFFLUENT		

Page 18 of 36

Surrogate Summary

Client: La Puente Valley County Water District
Project/Site: PVOU SPECIAL SAMPLING

Method: 8015B - Diesel Range Organics (DRO) (GC) (Continued)

Matrix: Water Prep Type: Total/NA

			Percent Surrogate Recovery (Acceptance Limits)
		OTCSN1	
Lab Sample ID	Client Sample ID	(53-151)	
380-164887-11	SP-1102B-4 - LGAC LAG VESSEL 4	90	
380-164887-12	SP-2158 - RO INFLUENT	89	
380-164887-13	SP-2305 - RO PERMEATE	87	
LCS 570-609547/2-A	Lab Control Sample	95	
LCSD 570-609547/3-A	Lab Control Sample Dup	99	
MB 570-609547/1-A	Method Blank	80	
Surrogate Legend			

Job ID: 380-164887-1

6

ŏ

10

13

14

Client: La Puente Valley County Water District Project/Site: PVOU SPECIAL SAMPLING

Job ID: 380-164887-1

Method: 8015C - Gasoline Range Organics (GRO) (GC)

Lab Sample ID: MB 570-609462/35

Matrix: Water

Analysis Batch: 609462

Client Sample ID: Method Blan	k
Drop Type, Total/N	^

rep Type: Total/NA

	MB N	ИB							
Analyte	Result C	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C4-C5	ND		50	29	ug/L			08/09/25 21:52	1
Gasoline Range Organics (C4-C13)	ND		50	29	ug/L			08/09/25 21:52	1
C6	ND		50	29	ug/L			08/09/25 21:52	1
C7	ND		50	29	ug/L			08/09/25 21:52	1
C8	ND		50	29	ug/L			08/09/25 21:52	1
C9 Range	ND		50	29	ug/L			08/09/25 21:52	1
C10-C11	ND		50	29	ug/L			08/09/25 21:52	1
C12-C13	ND		50	29	ug/L			08/09/25 21:52	1

MB MB

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 4-Bromofluorobenzene (Surr) 81 20 - 144 08/09/25 21:52

Lab Sample ID: LCS 570-609462/33 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 609462

		Spike	LCS	LCS					%Rec	
Analyte		Added	Result	Qualifier	Unit	I	D	%Rec	Limits	
Gasoline Range Organics		2000	1490		ug/L			75	71 - 120	
(04.040)										

(C4-C13)

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	59		20 - 144

Lab Sample ID: LCSD 570-609462/34

Matrix: Water

Analysis Batch: 609462

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics	2000	2140	*1	ug/L		107	71 - 120	36	20
(C4-C13)									

LCSD LCSD %Recovery Qualifier Limits Surrogate 4-Bromofluorobenzene (Surr) 87 20 - 144

Analysis Batch: 609462

Lab Sample ID: 360-164667-1 WS	Client Sample ID: SP-1001 - INFLUENT (UPSTREAM OF EQ TANK)
Matrix: Water	Prep Type: Total/NA

Sample Sample Spike MS MS %Rec Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits Gasoline Range Organics ND 2000 1690 ug/L 54 - 125 (C4-C13)

MS MS

Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene (Surr) 64 20 - 144

Eurofins Eaton Analytical Pomona

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Job ID: 380-164887-1

Client: La Puente Valley County Water District Project/Site: PVOU SPECIAL SAMPLING

Lab Sample ID: 380-164887-1 MSD

Method: 8015C - Gasoline Range Organics (GRO) (GC) (Continued)

Client Sample ID: SP-1001 - INFLUENT (UPSTREAM OF EQ TANK)

Prep Type: Total/NA

Analysis Batch: 609462

Matrix: Water

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics	ND	*1	2000	2030		ug/L		102	54 - 125	18	20
(C4-C13)											

(C4-C13)

MSD MSD

%Recovery Qualifier Limits Surrogate 20 - 144 4-Bromofluorobenzene (Surr) 87

Method: 8015B - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 570-609547/1-A

Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA Analysis Batch: 609566 **Prep Batch: 609547** MR MR

	IVID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C13-C14	ND		50	42	ug/L		08/10/25 14:46	08/10/25 19:29	1
C15-C16	ND		50	42	ug/L		08/10/25 14:46	08/10/25 19:29	1
C17-C18	ND		50	42	ug/L		08/10/25 14:46	08/10/25 19:29	1
C19-C20	ND		50	42	ug/L		08/10/25 14:46	08/10/25 19:29	1
C21-C22	ND		50	42	ug/L		08/10/25 14:46	08/10/25 19:29	1
C23-C24	ND		50	42	ug/L		08/10/25 14:46	08/10/25 19:29	1
C25-C28	ND		50	42	ug/L		08/10/25 14:46	08/10/25 19:29	1
C29-C32	ND		50	42	ug/L		08/10/25 14:46	08/10/25 19:29	1
C33-C36	ND		50	42	ug/L		08/10/25 14:46	08/10/25 19:29	1
C37-C40	ND		50	42	ug/L		08/10/25 14:46	08/10/25 19:29	1
C41-C44	ND		50	42	ug/L		08/10/25 14:46	08/10/25 19:29	1
C13-C22	ND		50	42	ug/L		08/10/25 14:46	08/10/25 19:29	1
C23-C44	66.1	JВ	250	42	ug/L		08/10/25 14:46	08/10/25 19:29	1
C13-C44	83.5	JB	250	42	ug/L		08/10/25 14:46	08/10/25 19:29	1

MB MB

Dil Fac Surrogate %Recovery Qualifier Limits Prepared Analyzed 08/10/25 14:46 n-Octacosane (Surr) 80 53 - 151 08/10/25 19:29

Lab Sample ID: LCS 570-609547/2-A

Matrix: Water

Analysis Batch: 609566

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 609547 %Rec

Spike LCS LCS Analyte Added Result Qualifier Unit %Rec Limits **Diesel Range Organics** 4000 3910 98 65 - 129 ug/L

[C10-C28]

LCS LCS Surrogate %Recovery Qualifier Limits n-Octacosane (Surr) 53 - 151 95

Lab Sample ID: LCSD 570-609547/3-A Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Matrix: Water

matrix. Water								. , pcc	.caiii i i i
Analysis Batch: 609566							Prep	Batch: 6	09547
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Diesel Range Organics	4000	4120		ua/l		103	65 - 129	5	30

[C10-C28]

Eurofins Eaton Analytical Pomona

QC Sample Results

Client: La Puente Valley County Water District Project/Site: PVOU SPECIAL SAMPLING Job ID: 380-164887-1

Method: 8015B - Diesel Range Organics (DRO) (GC) (Continued)

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
n-Octacosane (Surr)	99		53 - 151

___ .

3

1

6

8

46

11

12

14

Client: La Puente Valley County Water District Project/Site: PVOU SPECIAL SAMPLING Job ID: 380-164887-1

GC VOA

Analysis Batch: 609462

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
380-164887-1	SP-1001 - INFLUENT (UPSTREAM OF EQ TANK)	Total/NA	Water	8015C	
380-164887-2	SP-1301 - UV INFLUENT	Total/NA	Water	8015C	
380-164887-3	SP-1501 - UV EFFLUENT	Total/NA	Water	8015C	
380-164887-4	SP-1101A-1 LGAC LEAD VESSL 1 EFFLUENT	Total/NA	Water	8015C	
380-164887-5	SP-1102A-1 LGAC LAG VESSEL 1 EFFLUENT	Total/NA	Water	8015C	
380-164887-6	SP-1101B-2 LGAC LEAD VESSEL 2 EFFLUENT	Total/NA	Water	8015C	
380-164887-7	SP-1102B-2 LGAC LAG VESSEL 2 EFFLUENT	Total/NA	Water	8015C	
380-164887-8	SP-1101A-3 - LGAC LEAD VESSEL 3 EFFLUENT	Total/NA	Water	8015C	
380-164887-9	SP-1102A-3 LGAC LAG VESSEL 3 EFFLUENT	Total/NA	Water	8015C	
380-164887-10	SP-1101B-4 LGAC LEAD VESSEL 4 EFFLUENT	Total/NA	Water	8015C	
380-164887-11	SP-1102B-4 - LGAC LAG VESSEL 4 EFFLUENT	Total/NA	Water	8015C	
380-164887-12	SP-2158 - RO INFLUENT	Total/NA	Water	8015C	
380-164887-13	SP-2305 - RO PERMEATE	Total/NA	Water	8015C	
MB 570-609462/35	Method Blank	Total/NA	Water	8015C	
LCS 570-609462/33	Lab Control Sample	Total/NA	Water	8015C	
LCSD 570-609462/34	Lab Control Sample Dup	Total/NA	Water	8015C	
380-164887-1 MS	SP-1001 - INFLUENT (UPSTREAM OF EQ TANK)	Total/NA	Water	8015C	
380-164887-1 MSD	SP-1001 - INFLUENT (UPSTREAM OF EQ TANK)	Total/NA	Water	8015C	

GC Semi VOA

Prep Batch: 609547

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
380-164887-1	SP-1001 - INFLUENT (UPSTREAM OF EQ TANK)	Total/NA	Water	3510C	
380-164887-2	SP-1301 - UV INFLUENT	Total/NA	Water	3510C	
380-164887-3	SP-1501 - UV EFFLUENT	Total/NA	Water	3510C	
380-164887-4	SP-1101A-1 LGAC LEAD VESSL 1 EFFLUENT	Total/NA	Water	3510C	
380-164887-5	SP-1102A-1 LGAC LAG VESSEL 1 EFFLUENT	Total/NA	Water	3510C	
380-164887-6	SP-1101B-2 LGAC LEAD VESSEL 2 EFFLUENT	Total/NA	Water	3510C	
380-164887-7	SP-1102B-2 LGAC LAG VESSEL 2 EFFLUENT	Total/NA	Water	3510C	
380-164887-8	SP-1101A-3 - LGAC LEAD VESSEL 3 EFFLUENT	Total/NA	Water	3510C	
380-164887-9	SP-1102A-3 LGAC LAG VESSEL 3 EFFLUENT	Total/NA	Water	3510C	
380-164887-10	SP-1101B-4 LGAC LEAD VESSEL 4 EFFLUENT	Total/NA	Water	3510C	
380-164887-11	SP-1102B-4 - LGAC LAG VESSEL 4 EFFLUENT	Total/NA	Water	3510C	
380-164887-12	SP-2158 - RO INFLUENT	Total/NA	Water	3510C	
380-164887-13	SP-2305 - RO PERMEATE	Total/NA	Water	3510C	
MB 570-609547/1-A	Method Blank	Total/NA	Water	3510C	
LCS 570-609547/2-A	Lab Control Sample	Total/NA	Water	3510C	
LCSD 570-609547/3-A	Lab Control Sample Dup	Total/NA	Water	3510C	

Analysis Batch: 609566

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
380-164887-1	SP-1001 - INFLUENT (UPSTREAM OF EQ TANK)	Total/NA	Water	8015B	609547
380-164887-2	SP-1301 - UV INFLUENT	Total/NA	Water	8015B	609547
380-164887-3	SP-1501 - UV EFFLUENT	Total/NA	Water	8015B	609547
380-164887-4	SP-1101A-1 LGAC LEAD VESSL 1 EFFLUENT	Total/NA	Water	8015B	609547
380-164887-5	SP-1102A-1 LGAC LAG VESSEL 1 EFFLUENT	Total/NA	Water	8015B	609547
380-164887-6	SP-1101B-2 LGAC LEAD VESSEL 2 EFFLUENT	Total/NA	Water	8015B	609547
380-164887-7	SP-1102B-2 LGAC LAG VESSEL 2 EFFLUENT	Total/NA	Water	8015B	609547
380-164887-8	SP-1101A-3 - LGAC LEAD VESSEL 3 EFFLUENT	Total/NA	Water	8015B	609547
380-164887-9	SP-1102A-3 LGAC LAG VESSEL 3 EFFLUENT	Total/NA	Water	8015B	609547

Eurofins Eaton Analytical Pomona

Page 23 of 36

6

3

4

6

8

9

11

12

QC Association Summary

Client: La Puente Valley County Water District Project/Site: PVOU SPECIAL SAMPLING Job ID: 380-164887-1

GC Semi VOA (Continued)

Analysis Batch: 609566 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
380-164887-10	SP-1101B-4 LGAC LEAD VESSEL 4 EFFLUENT	Total/NA	Water	8015B	609547
380-164887-11	SP-1102B-4 - LGAC LAG VESSEL 4 EFFLUENT	Total/NA	Water	8015B	609547
380-164887-12	SP-2158 - RO INFLUENT	Total/NA	Water	8015B	609547
380-164887-13	SP-2305 - RO PERMEATE	Total/NA	Water	8015B	609547
MB 570-609547/1-A	Method Blank	Total/NA	Water	8015B	609547
LCS 570-609547/2-A	Lab Control Sample	Total/NA	Water	8015B	609547
LCSD 570-609547/3-A	Lab Control Sample Dup	Total/NA	Water	8015B	609547

Job ID: 380-164887-1

Client: La Puente Valley County Water District Project/Site: PVOU SPECIAL SAMPLING

Client Sample ID: SP-1001 - INFLUENT (UPSTREAM OF EQ

Lab Sample ID: 380-164887-1

TANK)

Date Collected: 08/07/25 11:32 Matrix: Water

Date Received: 08/07/25 15:12

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8015C		1	609462	A9VE	EET CAL 4	08/09/25 22:30
Total/NA	Prep	3510C			609547	TVD6	EET CAL 4	08/10/25 14:46
Total/NA	Analysis	8015B		1	609566	H6FE	EET CAL 4	08/10/25 20:50

Client Sample ID: SP-1301 - UV INFLUENT Lab Sample ID: 380-164887-2

Date Collected: 08/07/25 11:50

Date Received: 08/07/25 15:12

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8015C		1	609462	A9VE	EET CAL 4	08/09/25 23:27
Total/NA	Prep	3510C			609547	TVD6	EET CAL 4	08/10/25 14:46
Total/NA	Analysis	8015B		1	609566	H6FE	EET CAL 4	08/10/25 21:17

Client Sample ID: SP-1501 - UV EFFLUENT Lab Sample ID: 380-164887-3

Date Collected: 08/07/25 11:52

Date Received: 08/07/25 15:12

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8015C		1	609462	A9VE	EET CAL 4	08/09/25 23:46
Total/NA	Prep	3510C			609547	TVD6	EET CAL 4	08/10/25 14:46
Total/NA	Analysis	8015B		1	609566	H6FE	EET CAL 4	08/10/25 21:44

Client Sample ID: SP-1101A-1 LGAC LEAD VESSL 1

EFFLUENT

Date Collected: 08/07/25 14:35 Matrix: Water

Date Received: 08/07/25 15:12

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8015C		1	609462	A9VE	EET CAL 4	08/10/25 00:05
Total/NA	Prep	3510C			609547	TVD6	EET CAL 4	08/10/25 14:46
Total/NA	Analysis	8015B		1	609566	H6FE	EET CAL 4	08/10/25 22:11

Client Sample ID: SP-1102A-1 LGAC LAG VESSEL 1

EFFLUENT

Date Collected: 08/07/25 14:37 Matrix: Water

Date Received: 08/07/25 15:12

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8015C		1	609462	A9VE	EET CAL 4	08/10/25 00:24
Total/NA	Prep	3510C			609547	TVD6	EET CAL 4	08/10/25 14:46
Total/NA	Analysis	8015B		1	609566	H6FE	EET CAL 4	08/10/25 22:39

Eurofins Eaton Analytical Pomona

A

<u>5</u>

7

8

Matrix: Water

Matrix: Water

10

12

13

14

Lab Sample ID: 380-164887-4

Lab Sample ID: 380-164887-5

Job ID: 380-164887-1

Client: La Puente Valley County Water District Project/Site: PVOU SPECIAL SAMPLING

Client Sample ID: SP-1101B-2 LGAC LEAD VESSEL 2 Lab Sample ID: 380-164887-6

EFFLUENT

Date Collected: 08/07/25 14:39 **Matrix: Water**

Date Received: 08/07/25 15:12

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8015C		1	609462	A9VE	EET CAL 4	08/10/25 00:43
Total/NA	Prep	3510C			609547	TVD6	EET CAL 4	08/10/25 14:46
Total/NA	Analysis	8015B		1	609566	H6FE	EET CAL 4	08/10/25 23:06

Client Sample ID: SP-1102B-2 LGAC LAG VESSEL 2

EFFLUENT

Date Collected: 08/07/25 14:41 **Matrix: Water**

Date Received: 08/07/25 15:12

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8015C		1	609462	A9VE	EET CAL 4	08/10/25 01:02
Total/NA	Prep	3510C			609547	TVD6	EET CAL 4	08/10/25 14:46
Total/NA	Analysis	8015B		1	609566	H6FE	EET CAL 4	08/10/25 23:33

Client Sample ID: SP-1101A-3 - LGAC LEAD VESSEL 3

EFFLUENT

Date Collected: 08/07/25 11:37 Matrix: Water

Date Received: 08/07/25 15:12

	Datak	D-4-b		Dilatia	D-4-b			D
	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8015C		1	609462	A9VE	EET CAL 4	08/10/25 01:21
Total/NA	Prep	3510C			609547	TVD6	EET CAL 4	08/10/25 14:46
Total/NA	Analysis	8015B		1	609566	H6FE	EET CAL 4	08/11/25 00:00

Client Sample ID: SP-1102A-3 LGAC LAG VESSEL 3

EFFLUENT

Date Collected: 08/07/25 11:39 **Matrix: Water**

Date Received: 08/07/25 15:12

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8015C			609462	A9VE	EET CAL 4	08/10/25 01:40
Total/NA	Prep	3510C			609547	TVD6	EET CAL 4	08/10/25 14:46
Total/NA	Analysis	8015B		1	609566	H6FE	EET CAL 4	08/11/25 00:27

Client Sample ID: SP-1101B-4 LGAC LEAD VESSEL 4

EFFLUENT

Date Collected: 08/07/25 11:43 **Matrix: Water**

Date Received: 08/07/25 15:12

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8015C		1	609462	A9VE	EET CAL 4	08/10/25 02:18
Total/NA	Prep	3510C			609547	TVD6	EET CAL 4	08/10/25 14:46
Total/NA	Analysis	8015B		1	609566	H6FE	EET CAL 4	08/11/25 00:54

Eurofins Eaton Analytical Pomona

Page 26 of 36

Lab Sample ID: 380-164887-7

Lab Sample ID: 380-164887-8

Lab Sample ID: 380-164887-9

Lab Sample ID: 380-164887-10

8/11/2025

Lab Chronicle

Client: La Puente Valley County Water District Project/Site: PVOU SPECIAL SAMPLING

Client Sample ID: SP-1102B-4 - LGAC LAG VESSEL 4

Lab Sample ID: 380-164887-11

Job ID: 380-164887-1

EFFLUENT

Date Collected: 08/07/25 11:46 Matrix: Water

Date Received: 08/07/25 15:12

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8015C		1	609462	A9VE	EET CAL 4	08/10/25 02:37
Total/NA	Prep	3510C			609547	TVD6	EET CAL 4	08/10/25 14:46
Total/NA	Analysis	8015B		1	609566	H6FE	EET CAL 4	08/11/25 01:21

Client Sample ID: SP-2158 - RO INFLUENT Lab Sample ID: 380-164887-12

Date Collected: 08/07/25 11:55 Matrix: Water

Date Received: 08/07/25 15:12

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8015C		1	609462	A9VE	EET CAL 4	08/10/25 02:56
Total/NA	Prep	3510C			609547	TVD6	EET CAL 4	08/10/25 14:46
Total/NA	Analysis	8015B		1	609566	H6FE	EET CAL 4	08/11/25 01:48

Client Sample ID: SP-2305 - RO PERMEATE Lab Sample ID: 380-164887-13

Date Collected: 08/07/25 11:57 Matrix: Water

Date Received: 08/07/25 15:12

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8015C		1	609462	A9VE	EET CAL 4	08/10/25 03:14
Total/NA	Prep	3510C			609547	TVD6	EET CAL 4	08/10/25 14:46
Total/NA	Analysis	8015B		1	609566	H6FE	EET CAL 4	08/11/25 02:15

Laboratory References:

EET CAL 4 = Eurofins Calscience Tustin, 2841 Dow Avenue, Tustin, CA 92780, TEL (714)895-5494

2

3

4

5

7

9

10

12

Accreditation/Certification Summary

Client: La Puente Valley County Water District Project/Site: PVOU SPECIAL SAMPLING

Job ID: 380-164887-1

Laboratory: Eurofins Calscience

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
A2LA	Dept. of Defense ELAP	7296.01	11-30-26
A2LA	ISO/IEC 17025	7296.01	11-30-26
Alaska (UST)	State	25-005	03-02-26
Arizona	State	AZ0830	11-16-25
California	Los Angeles County Sanitation Districts	9257304	07-31-26
California	SCAQMD LAP	17LA0919	11-30-25
California	State	3082	07-31-26
Kansas	NELAP	E-10420	07-31-26
Nevada	State	CA00111	07-31-26
Oregon	NELAP	4175	02-02-26
USDA	US Federal Programs	525-23-159-97150	06-08-26
Utah	NELAP	CA00111	02-28-26
Washington	State	C916	10-11-25

3

4

5

8

9

15

13

14

Method Summary

Client: La Puente Valley County Water District Project/Site: PVOU SPECIAL SAMPLING

Job ID: 380-164887-1

Method	Method Description	Protocol	Laboratory
8015C	Gasoline Range Organics (GRO) (GC)	SW846	EET CAL 4
8015B	Diesel Range Organics (DRO) (GC)	SW846	EET CAL 4
3510C	Liquid-Liquid Extraction (Separatory Funnel)	SW846	EET CAL 4
5030C	Purge and Trap	SW846	EET CAL 4

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET CAL 4 = Eurofins Calscience Tustin, 2841 Dow Avenue, Tustin, CA 92780, TEL (714)895-5494

3

4

5

7

8

10

11

13

14

Sample Summary

Client: La Puente Valley County Water District Project/Site: PVOU SPECIAL SAMPLING

EFFLUENT

SP-2158 - RO INFLUENT

SP-2305 - RO PERMEATE

380-164887-12

380-164887-13

Lab Sample ID Client Sample ID Matrix Collected Received Sample Origin 380-164887-1 SP-1001 - INFLUENT (UPSTREAM OF EQ Water 08/07/25 11:32 08/07/25 15:12 California TANK) 380-164887-2 SP-1301 - UV INFLUENT Water 08/07/25 11:50 08/07/25 15:12 California 380-164887-3 SP-1501 - UV EFFLUENT Water 08/07/25 11:52 08/07/25 15:12 California 380-164887-4 SP-1101A-1 LGAC LEAD VESSL 1 EFFLUENT Water 08/07/25 14:35 08/07/25 15:12 California 380-164887-5 SP-1102A-1 LGAC LAG VESSEL 1 EFFLUENT Water 08/07/25 14:37 08/07/25 15:12 California 380-164887-6 SP-1101B-2 LGAC LEAD VESSEL 2 Water 08/07/25 14:39 08/07/25 15:12 California **EFFLUENT** 380-164887-7 SP-1102B-2 LGAC LAG VESSEL 2 EFFLUENT Water 08/07/25 14:41 08/07/25 15:12 California 380-164887-8 SP-1101A-3 - LGAC LEAD VESSEL 3 Water 08/07/25 11:37 08/07/25 15:12 California **EFFLUENT** 380-164887-9 SP-1102A-3 LGAC LAG VESSEL 3 EFFLUENT Water 08/07/25 11:39 08/07/25 15:12 California 380-164887-10 SP-1101B-4 LGAC LEAD VESSEL 4 Water 08/07/25 11:43 08/07/25 15:12 California **EFFLUENT** 380-164887-11 SP-1102B-4 - LGAC LAG VESSEL 4 Water 08/07/25 11:46 California 08/07/25 15:12

Water

Water

08/07/25 11:55

08/07/25 11:57

08/07/25 15:12

08/07/25 15:12

California

California

Job ID: 380-164887-1

4

5

7

8

9

10

13

14

Chain of Custody Record

Pomona, CA 91768-2642 Phone (626) 386-1100	ر			ol custody necolu	5							Env ronmen Tes
Client Information	Sampler SANTIAGO LOERA	RA .		Lab PM Vierne	Lab PM: Viernes, MaryAnn	<u>_</u>		Сатіег	Carrier Tracking No(s)		COC No: 380-92223-28105	105 1
Client Contact: Cesar Ortiz	Phone: (626)330-2126			E-Mail: MaryA	nn Vieme	s@et.eun	E-Mali: MaryAnn Viernes@et.eurofinsus.com	State of Origin	Origin:		Page: Page 1 of 2	
Company La Puente Valley County Water District			PWSID:				Analysis	is Requested	Þé		, # doc	
Address: 112 North First Street	Due Date Requested:										Preservation Codes: A - HCL	sepo:
City La Puente	TAT Requested (days):	.(S):				253-					e Noue N	Ä
State, Zip: CA, 91744	Compliance Project:	∆ Yes	∆ No									380-164887 COC
Phone: 626-330-2126(Tel)	PO#: Purchase Order not requir					s (C13						
Email: cortiz@lapuentewater.com	.₩O#:			I		olnsgric						
Project Name: PVOU SPECIAL SAMPLING	Project #: 3809773				on ac	O agns					Vela	
Site:	SSOW#:			O ola	5 0)	1/OI) Re					Other	
		Sample		Matrix O (Wewater, D Sesold, Owasterol, BT-77ssuc, A-Alr O	roem MS/MSD	eseld - OAG_881					tal Number of c	
Sample Identification	Sample Date	Time			ө д	108						Special Instructions/Note:
			Preservation Code:	on Code:	Ž	z						
SP-1001 - INFLUENT (UPSTREAM OF EQ TANK)	8/7/25	11 32	ŋ	Water	N 2	-					m	
SP-1301 - UV INFLUENT	8/7/25	11 50	၅	Water	N 2	-					8	
SP-1501 - UV EFFLUENT	8/7/25	11 52	9	Water	N 2	1					8	
SP-1101A-1 - LGAC LEAD VESSL 1 EFFLUENT	8/7/25	14.35	9	Water	N 2	1					8	
SP-1102A-1 - LGAC LAG VESSEL 1 EFFLUENT	8/7/25	14 37		Water	N 2	-					· CO	
SP-1101B-2 - LGAC LEAD VESSEL 2 EFFLUENT	8/7/25	14 39	ŋ	Water	N 2	1					8	
SP-1102B-1 - LGAC LAG VESSEL 2 EFFLUENT	8/7/25	14 41	9	Water	N 2	-					m	
SP-1101A-3 - LGAC LEAD VESSEL 3 EFFLUENT	8/7/25	11 37	ŋ	Water	N 2	1					m	
SP-1102A-3 - LGAC LAG VESSEL 3 EFFLUENT	8/7/25	11 39	9	Water	N 2	1					e	
SP-11018-4 - LGAC LEAD VESSEL 4 EFFLUENT	8/7/25	11 43	ჟ	Water	N 2	-					m	
SP-1102B-4 - LGAC LAG VESSEL 4 EFFLUENT	8/7/25	11.46	O	Water	2	-					m	
Possible Hazard Identification Non-Hazard	Poison B Unknown		Radiological		Sample R	le Disposal (A Retum To Clieni	I (A fee m Client	ay be assessed if san	ed if sample. I By Lab	s are reta	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Return To Client Disposal By Lab Archive For Mon	1 month) Months
Deliverable Requested I, II, III IV, Other (specify)					Special	Instruction	Special Instructions/QC Requirements				,	
Empty Kit Relinquished by		iji			Time.			M	Method of Shipment		Wallkin	
Relinquished by Semulager	Date/Time: 8/7/2025	15		Company LPVCWD	Rece	Received by		Warywate	Date/Time:	ime: (1.5	1505	Company
Relinquished by	Date/Time:		0	Company	Rece	Received by:			Date/Time	ime:		Company
	Date/Time:		0	Company	Rece	Received by:			Date/Time:	ime:		Company
Custody Seals Intact: Custody Seal No. Δ Yes Δ No					Sooj	r Temperat	ure(s) °C and	Cooler Temperature(s) $^{\circ}$ C and Other Remarks: $(3)(4)$ 25 , $(1+0,0,0)$ $)$	4) 25.0	0.0	0,	alel frozen
					1	1						Ver 0

Eurofins Eaton Analytical Pomona 941 Corporate Center Drive Pomona, CA 91768-2642 Phone (626) 386-1100	0	thain o	of Cus	Chain of Custody Record	ဝပ္ပ	Ē							·	2	💸 eurofins
Client Information	Sampler SANTIAGO LOERA	F&		Lab Pl Viem	es, Ma	aryAnr		Lab PM: Viernes, MaryAnn		Сатіег	Carrier Tracking No(s)	o(s):		COC No 380-92	COC No: 380-92223-28105.2
Client Contact Cesar Ortiz	Phone: (626)330-2126			E-Mail Mary	Ann V	emes	Øet er	rofinsus	8	State of Origin:	Origin:			Page: Page 1	1 of 1
Company La Puente Valley County Water District			PWSID:					Ana	lysis F	Analysis Requested) p			Job #:	
Address 112 North First Street	Due Date Requested:						-			-				Preser A - HCL	Preservation Codes
City La Puente	TAT Requested (days):	ys):					C53-							Non-N	Φ
State, Zip: CA, 91744	Compliance Project:	∆ Yes	o No				1-C55						estate de la constitución de la		
Phone: 626-330-2126(Tel)	PO#: Purchase Order not required	not required	_				s (C13					****			
Emait: cortiz@lapuentewater.com	WO#:				200 L	13	oinsgr								
Project Name: PVOU SPECIAL SAMPLING	Project #. 3809773					.o+o:	O agns						SJAU		
Site:	SSOW#:					OO enil	וסוו צי						ls3no:	Other:	
			Sample	Matrix (Wewater	ns/MSD NS/WSD	losso - O	leseld - O						o to redn		
Sample Identification	Cample Date	Sample		S=Sotio, O=waste/oil, BT=TIssue, A=Air DW=Drinking		AD_D810	AG_8310						nuM lato		ten Iriona
			Preserva	Preservation Code:	Beer Strain	8 4	8 -						ιX		opecial illou
SP-2158 - RO INFLUENT	8/7/25	11 55	ဗ	Water	Z	2	 -						6		
SP-2305 - RO PERMEATE	8/7/25	11 57	ŋ	Water	z	7	-						eo.		
							_								
					\dashv		\dashv								
					\dashv						1				
					_		-								
					-					_			-		
					- 		-						-		
					_										
Possible Hazard Identification Non-Hazard — Flammable — Skin Irritant — Poison B	on B Unknown				Sa	a B B	Dispos tum Te	al (A fe	е тау b	e assessed if san Disposal By Lab	ed if sam I By Lab	ples are	retain □ Arch	etained long Archive For	Sample Disposal (A fee may be assessed if samples are retained longer than 1 mc
1	ſ	1			Š	ecial I	struct	Special Instructions/QC Requirements	Require	nents.			ł		
Empty Kit Relinquished by:		Date:			Time.			9		¥	Method of Shipment	nipment		J. C.	Z Z
Relinquished by January	Date/Time: 8/7/2025	152 12:11		Company LPVCWD Company		Received by Received by Received by	Received by: Received by	# N	MA	huncherafin		Date/Time: S/7 Date/Time:	12		6 (1 o
Relinquished by	Date/Time:			Company		Received by	.ed pa				Δ_	Date/Time:			Ö
Custody Seals Infact: Custody Seal No.						Coole	Tempe	ature(s) °C	and Othe	Cooler Temperature(s) °C and Other Remarks ()	7	5.0 + 0.0-	0	75.	0 000
						The state of the s									Transport Control

tructions/Note:

Env ronme tres no

Eurofins Eaton Analytical Pomona

Client Information (Sub Contract Lab)

Eurofins Environment Testing Southwest,

941 Corporate Center Drive Pomona. CA 91768-2642 Phone: 626-386-1100

2841 Dow Avenue, Suite 100,

Client Contact:

Relinquished by:

Relinquished by:

Custody Seals Intact:

Δ Yes Δ No

Custody Seal No .:

Company:

Address:

City:

Shipping/Receiving

Chain of Custody Record

Viernes, MaryAnn

MaryAnn. Viernes@et, eurofinsus.com

State - California

Accreditations Required (See note):

N/A

N/A

Phone

Due Date Requested:

TAT Requested (days):

8/8

8/11/2025

N/A

Analysis Requested

State of Origin:

California

Carrier Tracking No(s):

Date/Time:

: eurofins

COC No:

Page:

Job #:

380-238289.1

Page 1 of 2

380-164887-1

Preservation Codes:

Tustin N/A State, Zip: CA, 92780 Phone: CC C4-C13 N/A 714-895-5494(Tel) WO# N/A N/A Project Name: Project #: Intermediate Zone Testing 38009773 SSOW#: Other: N/A N/A TO N/A Matrix Sample (W=water, Type Sample C=comp. Sample Identification - Client ID (Lab ID) Sample Date Time G=grab) BT=Tissue, A=Air Preservation Code: 11:32 3 SP-1001 - INFLUENT (UPSTREAM OF EQ TANK) (380-164887 8/7/25 G Water Х X Pacific 11:50 SP-1301 - UV INFLUENT (380-164887-2) G Water Х 3 8/7/25 Х Pacific SP-1501 - UV EFFLUENT (380-164887-3) Х 3 G Х 8/7/25 Water Pacific 14:35 SP-1101A-1 LGAC LEAD VESSL 1 EFFLUENT (380-164887-4) 8/7/25 G Water Х X 3 Pacific G Х Х 3 SP-1102A-1 LGAC LAG VESSEL 1 EFFLUENT (380-164887-5) 8/7/25 Water Pacific 14:39 Х Х 3 SP-1101B-2 LGAC LEAD VESSEL 2 EFFLUENT (380-164887-6) 8/7/25 G Water Pacific Х SP-1102B-1 LGAC LAG VESSEL 2 EFFLUENT (380-164887-7) 8/7/25 Water 3 Pacific SP-1101A-3 - LGAC LEAD VESSEL 3 EFFLUENT (380-164887-8 8/7/25 G Water Х 3 Pacific 11:39 SP - 1102A-3 LGAV LAG VESSEL 3 EFFLUENT (380-164887-9) 8/7/25 G Water Х Note; Since (aboratory accreditations are subject to change, Eurofins Eaton Analytical, LLC places the ownership of method, analyte & accreditation compliance upon our subcontract laboratories. This sample shipment is forwarded under chain-of-custody. If the laboratory does not currently maintain accreditation in the State of Origin listed above for analysis/tests/matrix being analyzed, the samples must be shipped back to the Eurofins Eaton Analytical, LLC taboratory or other instructions will be provided. Any changes to accreditation status should be brought to Eurofins Eaton Analytical, LLC attention immediately. If all requested accreditations are current to date, return the signed Chain of Custody attesting to said compliance to Eurofins Eaton Analytical, LLC. Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Possible Hazard Identification Disposal By Lab Return To Client Archive For Months Unconfirmed Deliverable Requested: I, II, III, IV, Other (specify) Primary Deliverable Rank: 2 Special Instructions/QC Requirements: Method of Shipment: Empty Kit Relinquished by: Date: Time: Relinquished by:

Received by

Received by:

Cooler Temperature(s) °C and Other Remarks:

Company

Company

Eurofins Eaton Analytical Pomona

941 Corporate Center Drive Pomona, CA 91768-2642 Phone: 626-386-1100

Chain of Custody Record

eurofins

Environment Testing

Client Information (Sub Contract Lab)	Sampler: N/A			Lab Vie	PM: rnes,	Marv	Ann					Carrier Tra N/A	cking No(s):		COC No: 380-238289.2		
Client Contact:	Phone:			E-M	ail:							State of Or				Page:		
Shipping/Receiving Company:	N/A			Ма			_		ofinsus See note			California	3			Page 2 of 2 Job#:		
Eurofins Environment Testing Southwest,							aliforr		See note	ıj.						380-164887-1		
Address: 2841 Dow Avenue, Suite 100,	Due Date Request 8/11/2025	ed:							Ana	lysis	Req	uested				Preservation Co -	des:	
City: Tustin	TAT Requested (da	ays): N/A																
State, Zip: CA, 92780	1						Organics											
Phone: 714-895-5494(Tel)	PO #: N/A					8	nge O											
Email: N/A	WO #: N/A				or No	9	OII R				1 1							
Project Name:	Project #:				- E	Z O	sell								DELS			
Intermediate Zone Testing	38009773				i e		VĐịc				1			1 1 1	contai			
Site: N/A	ssow#: N/A				Sample	30CG	10C_L								T .	Other: N/A		
	Samuel Date	Sample	Sample Type (C=comp,	Matrix (w=water, S=solid, D=waete/oil,	ield Filtered	Perform MS/MSD (Tes or No) 8015C GRO/5030CGasoline CC C4-C13	8015B_DRO/3510C_LVIDiesel/Oil Range	ושרבב, כבש							Total Number	0		
Sample Identification - Client ID (Lab ID)	Sample Date	Time	G=grab)	ation Code:	**	2 8	86 5	-							5	Special	nstructions	/Note:
SP-1101B-4 LGAC LEAD VESSEL 4 EFFLUENT (380-164887-10	8/7/25	11:43 Pacific	G	Water	T	×	×						THE REAL PROPERTY.		3			
SP-1102B-4 - LGAC LAG VESSEL 4 EFFLUENT (380-164887-11	8/7/25	11:46 Pacific	G	Water	П	×	(x				П				3			
SP-2158 - RO INFLUENT (380-164887-12)	8/7/25	11:55 Pacific	G	Water		×	(x								3			
SP-2305 - RO PERMEATE (380-164887-13)	8/7/25	11:57 Pacific	G	Water	H	×	X			1					3.			
					\dagger		+			+	H	-						
					П	T												
					H	+	+	\vdash	\vdash	+	H							
Note: Since laboratory accreditations are subject to change, Eurofins Eaton Analyl currently maintain accreditation in the State of Origin listed above for analysis/test Eurofins Eaton Analytical, LLC attention immediately. If all requested accreditation	/matrix being analyz	ed, the sample	s must be shi	pped back to th	e Euro	fins Ea	ton An	alytical	LLC lab	oratory o	or other	instruction						
Possible Hazard Identification					15	amp	le Dis	spose	il (A fe	e may	be as	sessed	if sampl		ine	d longer than :	l month)	
Unconfirmed							Retui	m To	Client		\bigsqcup_{D_i}	isposal E	ly Lab	\Box _A	rchi	ve For	Months	5
Deliverable Requested: I, II, III, IV, Other (specify)	Primary Deliver	able Rank: 2	2		5	pecia	al Insi	tructio	ns/QC	Requir	remen	is:					-11	
Empty Kit Relinquished by:	. ,	Date:			Tim	e:						Meth	od of Shipr	ment:				
Relinquished by:	Date/Time: /8/2	5 13	320	Company	7	Re	ceived	by:	W	X	W	y)		18 P.B	يه	5 Bao	Company	EC
Relinquished by: U	Date/Time:			Company		Re	ceived	by:	3		7		Date	e/Time:			Company	
Relinquished by:	Date/Time:			Company		Re	ceived	by:					Date	e/Time:			Company	
Custody Seals Intact: Custody Seal No.:						Co	oler Te	mpera	ture(s) °C	and Ot	her Ren	narks:	9.3	0-1	0	SCII		

Login Sample Receipt Checklist

Client: La Puente Valley County Water District Job Number: 380-164887-1

Login Number: 164887 List Source: Eurofins Eaton Analytical Pomona

List Number: 1

Creator: Sanchez Velasquez, Gustavo

Question	Answer	Comment
The coolers custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
Samples were received on ice.	True	
Cooler(s) Temperature is acceptable.	True	Received same day of collection; chilling process has begun.
Cooler(s) Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and is legible.	True	
COC is filled out with all pertinent information.	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
CIO4 headspace requirement met (>50% for CA, >30% for other states).	True	
Samples do not require splitting or compositing.	True	
Container provided by EEA	True	

3

5

6

8

10

4.6

13

Login Sample Receipt Checklist

Client: La Puente Valley County Water District Job Number: 380-164887-1

Login Number: 164887
List Source: Eurofins Calscience
List Number: 2
List Creation: 08/08/25 05:28 PM

Creator: Judkins, Julianne

Creator: Judkins, Julianne		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	0.1/0.4 SC11
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	N/A	Received project as a subcontract.
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

3

4

5

9

11

13

14

PVOU-SZ Operations Report

Date: September 24, 2025

To: Michael Shannon, Northrop Grumman Systems

Cc: Roy Frausto, General Manager

From: Davis To, Field Operations Engineer

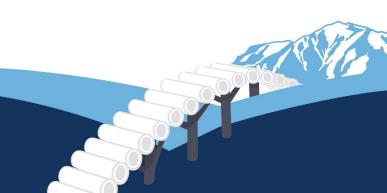
Subject: PVOU-SZ Operations Monthly Report (August 2025)

In accordance with our Agreement for Operational Services of a Water Treatment Facility between the Northrop Grumman Systems (the "NG") and the La Puente Valley County Water District (the "District"), the District is providing a monthly operations report for August 2025. The report represents operational information along with the current status of various items listed under the appropriate heading.

PVOU-SZ Plant Operations Snapshot

Production Well	Current Well Operations	Well GPM
EW-C	INTERMITTENT	63
EW-N	INTERMITTENT	26
TOTAL COMB	INED WELL GPM	89

Treatment Component	Current Operations	Flow GPM
LGAC System	INTERMITTENT	94
UV System	INTERMITTENT	94
RO System	INTERMITTENT	83 Influent 11 Bypass


Is Treatment Plant in Normal	NO	As of what date:	2/24/2025
Operations Yes / No	140	AS OF WHAT GATE.	2/24/2023

Brief description below:

Due to the TPH issue, Shallow Zone – South Treatment Plant operation has been decreased to routine forward flushes for upkeep of system components and data collection. The SZ-S Plant is currently set up to discharge effluent/treated water to the wastewater tank for system flushes as a result of the ongoing TPH issue.

Extraction Wells - Online	Treatment Plant – Online	Extraction Wells – Offline	Treatment Plant – Offline
19.8 Hours	17.2 Hours	724.2 Hours	726.8 Hours
0.82 Days	0.71 Days	30.18 Days	30.29 Days

Summary: SZ-S Plant operation has been decreased to routine forward flushes during work regular working hours due to the TPH issue for upkeep of the system components and data collection.

Supply and Production

• PVOU-SZ Monthly Well Production

Well	Beginning Read 8/1/2025 (Kgals)	Ending Reads 9/1/2025 (Kgals)	Units Produced (Kgals)	Production in Acre Feet
EW-C	228,439	229,357	918	0.28
EW-N	93,400	93,760	360	0.11
Total SZ Production		1,278	0.39	

• PVOU-SZ Well Levels (Sounder)

Well	Static Water Level	Pumping Water Level	Drawdown
EW-C	68'8"	-	-
EW-N	64'3"	-	-

• PVOU-SZ Monthly Water Volume Processed

SZ-Raw Water Flow Meter	8/1/25 Total Flow Reading - Gals	9/1/25 Total Flow Reading – Gals	Water Processed - MG
FQIT-4251	32,564,128	32,690,446	0.126

• PVOU-SZ Monthly Metered Deliveries

System	Total Discharge (Acre Feet)
NPDES	0
LACSD	0.318
Total Deliveries	0.318

Total Production Vs. Total Deliveries

Total Production in Acre Feet	Total Deliveries in Acre Feet
0.39	0.318

• Water Discharged to Wastewater Brine Line

Flow Meter	8/1/25 Total Flow Reading - Gals	9/1/25 Total Flow Reading – Gals	Total Flow (Gallons)
FQIT-5011	6,686,070	6,717,009	30,939
FQIT-4951	25,048,372	25,121,160	72,788
SZ-S- Wastewater Discharge Total			103,727

^{*}In August 2025, due to TPH exceedance issue, SZ effluent water continues to be discharged as wastewater until further notice.

• Chemicals Consumed

Chemical Type	8/1/25 (Data from Round Sheets) - Gals.	8/31/25 (Data from Round Sheets) - Gals.	Total Consumed – Gals.
Sulfuric Acid (H ₂ SO ₄)	511	505	6
Hydrogen Peroxide (H ₂ O ₂)	367	318	49
Scale Inhibitor	523	516	7
Sodium Hydroxide (NaOH)	1170	1110	60

Water Quality

- SZ Surface Water Discharge Monitoring (NPDES) District Staff did not collect discharge samples from the SZ system for the month of August; due to the TPH issue.
 - **SZ Sewer Discharge Monitoring (LACSD) -** District Staff collected required discharge samples from the SZ system for the month of July; 4 samples were collected for bi-weekly surcharge monitoring. Attachment A: Final COA Report from August 7 & 21, 2025, sample events.
- SZ Other Samples District Staff did not collect any other samples for the month of August.

Compliance Reporting

- SZ Surface Water Discharge Reporting (NPDES) District Staff submitted no NPDES water quality report pertaining to the PVOU-SZ (and IZ) during August.
- SZ Sewer Discharge Reporting (LACSD) District Staff submitted no LACSD water quality reports during August.

Repair/Replace/Optimization Activities

- Maintenance Work
 - General site cleaning
 - o Rinse chemical containment areas
 - o Cleaned analyzer site glasses
 - Monthly site inspections for well sites
 - Sodium Hydroxide Skid Replace pump tubing

SZ-S Trojan UV Preventative Maintenance Site Visit

- o Identify and resolve system alarms UVT Transmittance Analog Signal Fault Due to UVT repair.
- Log lamp hours
- Optiview UVT arrived at the site. Trojan technicians installed and tested with the plant running, verified operational.
- Trojan verified UV system had no issues at higher flow rate ~125gpm. Verified design value of 150 gpm for UV system.

SZ-S Wigen RO Preventative Maintenance Site Visit

- Collected data to evaluate system performance for multimedia filters, cartridge filters, RO trains
- Verified calibration of analyzers
- Verified calibration of chemical pumps
- RO Train 1 Permeate Dump Valve Wigen technician troubleshot adjusted limit settings, able to resolve alarm.
- RO Bypass Valve Wigen technician troubleshot contacted valve representative (Duncan) and could not resolve. Wigen to follow up with quote for replacement electrical boards.

Upcoming Repair/Replace/Optimization Activities

• **SZ-S Analyzers** – District met with HACH Representative on June 11, 2025, to discuss replacement of ATI analyzers with HACH analyzers to benefit overall reliability of the water analyzers at the treatment system as well as suitability for setting up one service contract for all analyzers at the plant. HACH followed up with quote, the District reviewing and determining next steps. See photos below:

- **SZ-S Equipment –** Assess equipment displays that are subject to damage from sun exposure. Evaluate and implement temporary and permanent solutions for future protection.
- RO System Program Changes/Optimization The District in communication with Wigen (RO Vendor) to discuss programming optimizations such as rotation of RO Trains and Multimedia Filters, enabling autoflush when the system is offline, RO startup/shutdown sequencing, etc. The District has received a quote from Wigen and is in the process of preparing a memo to NG.

NG Requested Upgrades

- IZ and SZ Level PLC Upgrade (Wastewater Tank Communication) The District contracted with Franks Industrial. Frank's Industrial Service's currently waiting on receiving parts (hardware) to initiate work. Frank's Industrial Service's is scheduled to conduct this work in September 2025.
- Standard Operating Procedures (SOP) Development The District received approval from NG to proceed with Kennedy Jenks for development of SOPs and Unit Process Guidelines. The District received approval from their Board of Directors and is in the process of setting up contract documents with Kennedy Jenks.
- Cybersecurity Stantec on behalf of Northrop Grumman issued a SOW for Cybersecurity upgrades at the PVOU Plant. The District has been in communication with firms recommended in the scope but will need Stantec's assistance to answer technical questions with the firms.

Safety Items

• Eye Wash Station Volume Deficiency – NG advised that this work will be directly procured, managed and implemented through NG. This work is anticipated to be executed in September 2025.

Outages

• No outages or anomalies to report occurred during August 2025 for the SZ-S Plant with limited operation.

Performance Contracts

- Wigen Reverse Osmosis System (Preventative Maintenance) The District scheduled Wigen to be
 onsite for assessment and preventative maintenance work on a quarterly basis for the IZ & SZ-S Systems.
 The quarterly scheduled preventative maintenance visit was conducted on the week of August 25, 2025.
- Trojan UV/AOP System (Preventative Maintenance) The District scheduled Trojan to be onsite for assessment and preventative maintenance work on a quarterly basis for the IZ & SZ-S Systems. The quarterly scheduled preventative maintenance visit was conducted on the week of August 18th, 2025.

Other

- **Standard Operating Procedures SOPs –** The following SOPs have been developed for the use of the District's Operation Staff:
 - Sampling for Bacteriological Contaminants Training conducted 7/22/25
 - Sampling for VOCs
 - o Sampling for SOCs
 - Sampling for Radionuclides
 - Sampling for PFAS
 - Chemical Safety Awareness Training conducted 5/30/25

ATTACHMENT A

FINAL REPORT

Work Orders: 5G28029 Report Date: 8/26/2025

Received Date: 8/8/2025

Turnaround Time: Normal

Phones: (626) 330-2126

Fax: (626) 330-2679

P.O. #:

Billing Code:

Project: LACSD Bi-Monthly

Attn: Cesar Ortiz

Client: La Puente Valley County Water

P.O Box 3136; 112 N.First St. La Puente, CA 91744

DoD-ELAP ANAB #ADE-2882 ◆ DoD-ISO ANAB # ◆ ELAP-CA #1132 ◆ EPA-UCMR #CA00211 ◆ ISO17025 ANAB #L2457.01 ◆ LACSD #10143

This is a complete final report. The information in this report applies to the samples analyzed in accordance with the chain-of-custody document. Results are related only to the items tested. Weck Laboratories certifies that the test results meet all requirements of TNI unless noted by qualifiers or written in the Case Narrative. The report may include analytes that are not currently accreditable by some state agencies or accrediting bodies. This analytical report must be reproduced in its entirety.

Dear Cesar Ortiz,

Enclosed are the analytical results for the samples submitted under the attached Chain of Custody document. All analyses adhered to the method criteria, except where noted in the case narrative, sample condition checklist, and/or data qualifiers.

Reviewed by:

Kenneth C. Oda For Valerie I. Ayo

Project Manager

5G28029 Page 1 of 5

FINAL REPORT

La Puente Valley County Water P.O Box 3136; 112 N.First St. La Puente, CA 91744 Project Number: LACSD Bi-Monthly

Project Manager: Cesar Ortiz

Reported:

08/26/2025 16:06

Sample Condition

Temperature	23.40	С	
COC present	~	COC completed properly	~
COC matches sample labels	~	Wet ice	
Blue ice	~	Sample(s) intact	~
Sample(s) using proper containers	~	Sample(s) have sufficient sample volume	~
Sample(s) received within hold time	~	Sample(s) labels have correct preservation	~
Sample(s) have acceptable pH	~	Sample(s) have acceptable Cl	

Sample Summary

Sample Name	Sampled By	Lab ID	Matrix	Sampled	Qualifiers
SP-3301 (22237- PVOU- IZ & SZ South)	Jordan Navarro	5G28029-01	Water	08/08/25 13:06	

5G28029 Page 2 of 5

FINAL REPORT

La Puente Valley County Water P.O Box 3136; 112 N.First St. La Puente, CA 91744 Project Number: LACSD Bi-Monthly

Project Manager: Cesar Ortiz

Reported:

08/26/2025 16:06

Sample Results

Sample: SP-3301 (22237- PVOU- IZ & SZ South)

Sampled: 08/08/25 13:06 by Jordan Navarro

5G28029-01 (Water)

Analyte Result MDL MRL Units Dil Analyzed Qualifier Conventional Chemistry/Physical Parameters by APHA/EPA/ASTM Methods

Method: EPA 410.4 Instr: UVVIS05

NELLO METALO

 Batch ID: W5H1191
 Preparation: _NONE (WETCHEM)
 Prepared: 08/15/25 09:26
 Analyst: jls

 Chemical Oxygen Demand
 5.1
 2.9
 5.0
 mg/l
 1
 08/19/25

Method: SM 2540D Instr: OVEN18

 Batch ID: W5H0688
 Preparation: _NONE (WETCHEM)
 Prepared: 08/11/25 09:56
 Analyst: mes

 Total Suspended Solids
 5
 mg/l
 1
 08/11/25

5G28029 Page 3 of 5

FINAL REPORT

La Puente Valley County Water P.O Box 3136; 112 N.First St. La Puente, CA 91744 Project Number: LACSD Bi-Monthly

Project Manager: Cesar Ortiz

Reported:

08/26/2025 16:06

Quality Control Results

					Spike	Source		%REC		RPD	
Analyte	Result	MDL	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
Batch: W5H0688 - SM 2540D											
Blank (W5H0688-BLK1)				Pre	pared & An	alyzed: 0	8/11/2	5			
Total Suspended Solids	ND	5	5	mg/l		_					
LCS (W5H0688-BS1)				Pre	pared & An	alyzed: 0	8/11/2	5			
Total Suspended Solids		5	5	mg/l	71.0		97	90-110			
Duplicate (W5H0688-DUP1)	Source:	5G2804	0-01	Pre	pared & An	alyzed: 0	8/11/2	5			
Total Suspended Solids	135	5	5	mg/l		148			9	10	
Batch: W5H1191 - EPA 410.4											
Blank (W5H1191-BLK1)				Prepare	d: 08/15/25	Analyze	d: 08/1	19/25			
Chemical Oxygen Demand	ND	2.9	5.0	mg/l							
LCS (W5H1191-BS1)				Prepare	d: 08/15/25	Analyze	d: 08/1	19/25			
Chemical Oxygen Demand	190	12	20	mg/l	200		95	90-110			
LCS (W5H1191-BS2)					d: 08/15/25	Analyze					
Chemical Oxygen Demand	1920	12	20	mg/l	2000		96	90-110			
Duplicate (W5H1191-DUP1)		5H0807	-	-	d: 08/15/25		d: 08/1	19/25			
Chemical Oxygen Demand	717	5.8	10	mg/l		722			0.7	15	
Matrix Spike (W5H1191-MS1)		5G1101	-		d: 08/15/25						
Chemical Oxygen Demand	217	12	20	mg/l	200	32.5	92	90-110			
Matrix Spike (W5H1191-MS2)		5H1203	-	-	d: 08/15/25						
Chemical Oxygen Demand	2280	12	20	mg/l	2000	470	90	90-110			
Matrix Spike Dup (W5H1191-MSD1)		5G1101	-		d: 08/15/25						
Chemical Oxygen Demand	219	12	20	mg/l	200	32.5	93	90-110	0.9	15	
Matrix Spike Dup (W5H1191-MSD2)		5H1203	2-01	Prepare	d: 08/15/25	Analyze		19/25			
Chemical Oxygen Demand	2320	12	20	mg/l	2000	470	93	90-110	2	15	

FINAL REPORT

La Puente Valley County Water P.O Box 3136; 112 N.First St. La Puente, CA 91744

Definition

Project Number: LACSD Bi-Monthly

Reported:

08/26/2025 16:06

Item

Notes and Definitions

%REC	Percent Recovery
Dil	Dilution
MDL	Method Detection Limit
MRL	Method Reporting Limit (MRL) is the minimum levels, concentrations, or quantities of a target variable (e.g., target analyte) that can be reported with a specified degree of confidence. The MRL is also known as Limit of Quantitation (LOQ)
ND	NOT DETECTED at or above the Method Reporting Limit (MRL). If Method Detection Limit (MDL) is reported, then ND means not detected at or above the MDL.
RPD	Relative Percent Difference

Project Manager: Cesar Ortiz

Any remaining sample(s) will be disposed of one month from the final report date unless other arrangements are made in advance.

All results are expressed on wet weight basis unless otherwise specified.

Sample that was matrix spiked or duplicated.

All samples collected by Weck Laboratories have been sampled in accordance to laboratory SOP Number MIS002.

FINAL REPORT

Work Orders: 5H11028 **Report Date:** 9/11/2025

Received Date: 8/21/2025

Project: PVOU - LACSD Surcharge - Bi-Weekly

Turnaround Time: Normal

Phones: (626) 330-2126

Fax: (626) 330-2679

P.O. #:

Billing Code:

Attn: Roy Frausto

Client: La Puente Valley County Water

P.O Box 3136; 112 N.First St. La Puente, CA 91744

DoD-ELAP ANAB #ADE-2882 • DoD-ISO ANAB # • ELAP-CA #1132 • EPA-UCMR #CA00211 • LACSD #10143

This is a complete final report. The information in this report applies to the samples analyzed in accordance with the chain-of-custody document. Results are related only to the items tested. Weck Laboratories certifies that the test results meet all requirements of TNI unless noted by qualifiers or written in the Case Narrative. The report may include analytes that are not currently accreditable by some state agencies or accrediting bodies. This analytical report must be reproduced in its entirety.

Dear Roy Frausto,

Enclosed are the analytical results for the samples submitted under the attached Chain of Custody document. All analyses adhered to the method criteria, except where noted in the case narrative, sample condition checklist, and/or data qualifiers.

Reviewed by:

Kenneth C. Oda For Valerie I. Ayo

Project Manager

FINAL REPORT

La Puente Valley County Water P.O Box 3136; 112 N.First St. La Puente, CA 91744 **Project Number:** PVOU - LACSD Surcharge - Bi-Weekly

Reported: 09/11/2025 15:07

Project Manager: Roy Frausto

Sample Condition

Temperature	17.10 C				
COC present	~	COC completed properly	~		
COC matches sample labels	~	Wet ice			
Blue ice	~	Sample(s) intact	~		
Sample(s) using proper containers	~	Sample(s) have sufficient sample volume	~		
Sample(s) received within hold time	~	Sample(s) labels have correct preservation	~		
Sample(s) have acceptable pH	~	Sample(s) have acceptable Cl			

Sample Summary

Sample Name	Sampled By	Lab ID	Matrix	Sampled	Qualifiers
SP-3301 (22237- PVOU- IZ & SZ South)	Jordan Navarro	5H11028-01	Water	08/21/25 13:54	

5H11028 Page 2 of 5

Certificate of Analysis

mg/l

FINAL REPORT

08/27/25

La Puente Valley County Water P.O Box 3136; 112 N.First St. La Puente, CA 91744

Total Suspended Solids

Project Number: PVOU - LACSD Surcharge - Bi-Weekly

Reported: 09/11/2025 15:07

Project Manager: Roy Frausto

Sample Results

Sample: SP-3301 (22237- PVOU- IZ & SZ South) Sampled: 08/21/25 13:54 by Jordan Navarro

5H11028-01 (Water) **Analyte** Result MDL MRL Units Analyzed Qualifier Conventional Chemistry/Physical Parameters by APHA/EPA/ASTM Methods Method: EPA 410.4 Instr: UVVIS05 **Batch ID: W5H1953 Preparation:** _NONE (WETCHEM) Prepared: 09/02/25 10:07 Analyst: jls Chemical Oxygen Demand 2.9 5.0 09/05/25 mg/l Instr: OVEN18 Method: SM 2540D **Batch ID: W5H2188 Preparation:** _NONE (WETCHEM) Prepared: 08/27/25 13:33 Analyst: mgl

5

Certificate of Analysis

FINAL REPORT

La Puente Valley County Water P.O Box 3136; 112 N.First St. La Puente, CA 91744 Project Number: PVOU - LACSD Surcharge - Bi-Weekly

Reported: 09/11/2025 15:07

Project Manager: Roy Frausto

Q

Quality Control Results

Conventional Chemistry/Physical Parar	neters by	APHA/E	PA/ASTI	M Methods							
					Spike	Source		%REC		RPD	
Analyte	Result	MDL	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifie
atch: W5H1953 - EPA 410.4											
Blank (W5H1953-BLK1)					: 08/25/25	Analyze	d: 09/0)5/25			
Chemical Oxygen Demand	ND	2.9	5.0	mg/l							
LCS (W5H1953-BS1)				Prepared	: 08/25/25	Analyze	d: 09/0)5/25			
Chemical Oxygen Demand	188	12	20	mg/l	200		94	90-110			
LCS (W5H1953-BS2)				Prepared	: 08/25/25	Analyze	d: 09/0)5/25			
Chemical Oxygen Demand		12	20	mg/l	2000		98	90-110			
Duplicate (W5H1953-DUP1)		5H2104	4-01	Prepared	: 08/25/25	Analyze	d: 09/0)5/25			
Chemical Oxygen Demand		23	40	mg/l		2770			3	15	
Matrix Spike (W5H1953-MS1)	Source:	5H1102	8-01	Prepared	: 08/25/25	Analyze	d: 09/0)5/25			
Chemical Oxygen Demand	189	12	20	mg/l	200	ND	94	90-110			
Matrix Spike (W5H1953-MS2)	Source:	5H1400	2-02	Prepared	: 08/25/25	Analyze	d: 09/0)5/25			
Chemical Oxygen Demand		12	20	mg/l	2000	381		90-110			
Matrix Spike Dup (W5H1953-MSD1)	Source:	5H1102	8-01	Prepared	: 08/25/25	Analyze	d: 09/0)5/25			
Chemical Oxygen Demand	185	12	20	mg/l	200	ND	92		2	15	
Matrix Spike Dup (W5H1953-MSD2)	Source:	5H1400	2-02	Prepared	: 08/25/25	Analyze	d: 09/0)5/25			
Chemical Oxygen Demand	2540	12	20	mg/l	2000	381		90-110	5	15	
atch: W5H2188 - SM 2540D											
Blank (W5H2188-BLK1)				Pron	ared & Ana	alvzed: 08	2/27/2	5			
Total Suspended Solids		5	5	mg/l	area ee Ain	aryzeu. o	<i>J,</i> _ <i>I</i> ,	•			
LCS (W5H2188-BS1)				Pron	ared & Ana	alvzed: 08	8/27/2	5			
Total Suspended Solids	62.2	5	5	mg/l	65.1	aryzeu. Ot		90-110			
Duplicate (W5H2188-DUP1)	Cource	5H1500	6 01	Dron	ared & Ana	alvzad. 00	יבו דבו פ	E			
Total Suspended Solids		5	5	mg/l	areu & Ana	68.7	5/21/2	,	10	10	

Certificate of Analysis

FINAL REPORT

La Puente Valley County Water P.O Box 3136; 112 N.First St. La Puente, CA 91744 **Project Number:** PVOU - LACSD Surcharge - Bi-Weekly

Reported:

09/11/2025 15:07

Source

Notes and Definitions

%REC	Percent Recovery
Dil	Dilution
MDL	Method Detection Limit
MRL	Method Reporting Limit (MRL) is the minimum levels, concentrations, or quantities of a target variable (e.g., target analyte) that can be reported with a specified degree of confidence. The MRL is also known as Limit of Quantitation (LOQ)
ND	NOT DETECTED at or above the Method Reporting Limit (MRL). If Method Detection Limit (MDL) is reported, then ND means not detected at or above the MDL.
RPD	Relative Percent Difference

Project Manager: Roy Frausto

Any remaining sample(s) will be disposed of one month from the final report date unless other arrangements are made in advance.

All results are expressed on wet weight basis unless otherwise specified.

Sample that was matrix spiked or duplicated.

All samples collected by Weck Laboratories have been sampled in accordance to laboratory SOP Number MIS002.

La Puente Water District September 2025 Disbursements

Check #	Payee	Amount	Description
13123	Alexandra Guevara	\$ 505.00	Cleaning Service
13124	Applied Technology Group Inc	\$ 30.00	Radio System
13125	Chevrolet of Puente Hills	\$ 250.00	Truck Maintenance
13126	Cintas	\$ 222.00	Uniform Service
13127	Corporate Billing LLC Dept	\$ 1,271.22	Vehicle Maintenance
13128	Delco Service, Inc -Southwest Hydro Tech	\$ 4,865.86	PRV Maintenance
13129	GoTo Technologies USA, LLC	\$ 142.74	VOIP Phone System
13130	Highroad IT	\$ 1,981.00	Technical Support
13131	InfoSend	\$ 86.63	Billing Expense
13132	Lagerlof LLP	\$	Attorney Fees
13133	Merritt's Hardware	\$ 158.75	Field Supplies
13134	New Horizons Comm. Corp (NHC)	\$	Telephone Service
13135	S & J Supply Co Inc	\$ 108.45	Tools and Supplies
13136	San Gabriel Basin WQA	\$	Pumping Rights
13137	SC Edison	\$	Power Expense
13138	SG Creative , LLC	\$	Social Media Expense
13139	Underground Service Alert	\$	Line Notifications
13140	Verizon Connect Fleet USA LLC	\$	Vehicle Tracking
13141	Weck Laboratories Inc	\$	Water Sampling
13142	United Site Services	\$	Restroom Service @ BP Plant
13143	Waste Management of SG Valley	\$	Trash Service
13144	VCOM Solutions Inc	\$	Internet Service
13145	Verizon Wireless	\$ 76.02	Collectors
13146	Verizon Wireless	\$	Telephone Service
13147	Verizon Wireless	\$	Telephone Service
13148	Civiltec Engineering Inc	\$	BPOU-UVAOP Replacement Feasibility Study
13149	Eurofins Eaton Analytical Inc	\$	Water Sampling
13150	Grainger Inc	\$	Sundries and Tools
13151	Harrington Industrial Plastics	\$	Bag Filters and Vessel Maintenance
13152	NorthStar Chemical	\$	Chemical Expense
13153	Uline Inc	\$	Field Supplies
13154	W.A. Rasic Construction	\$ •	VOC Expense
13155	Weck Laboratories Inc	\$	Water Sampling
13156	Weck Laboratories Inc	\$	Water Sampling
13157	Tustin Buick GMC	\$	New Vehicle Expense
13158	Verizon Wireless	\$	Collectors
13159	Verizon Wireless	\$ 389.62	Cellular Service
13160	San Gabriel Basin WQA	\$ 6,782.40	24/25 Assessment on Prescriptive Pumping Rights (2nd Half)
13161	Answering Service Care, LLC	\$ 155.92	Answering Service
13162	Chevron	\$ 3,972.08	Fuel Expense
13163	InfoSend	\$	Billing Expense
13164	Main SG Basin Watermaster	\$	Watermaster 2024-25 Production Assessments
13165	Public Water Agencies Group	\$	Emergency Preparedness Program
13166	SC Edison	\$	Power Expense
13167	Sol Media	\$	CCR Expense
13168	Spectrum Business	\$ 203.58	Telephone Service

La Puente Water District September 2025 Disbursements - continued

Check #	Payee	Amount	Description
13169	Spectrum Business	\$ 359.06	Telephone Service
13170	Staples	\$ 62.63	Office Expense
13171	Valley Vista Services	\$ 445.10	Trash Service
13172	Weck Laboratories Inc	\$ 98.10	Water Sampling
13173	West Yost & Associates, Inc	\$ 99.00	AWIA Cyber Assessments
13174	Western Water Works	\$ 11.03	Sundries and Tools
13175	Spectrum Business	\$ 738.50	Telephone Service
13176	Cardiacare CPR & First Aid	\$ 1,445.00	CPR Training
13177	Citi Cards	\$ 8,412.82	Administrative Expenses
13178	CJ Brown & Company CPAs	\$ 500.00	Auditing Service
13179	Jack Henry & Associates	\$ 42.25	Web E-Check Fee's
13180	Resource Building Materials	\$ 34.33	Concrete
13181	S & J Supply Co Inc	\$ 461.99	Tools and Supplies
13182	San Gabriel Valley Water Company	\$ 365.86	Water Service
13183	Staples	\$ 12.90	Office Expense
13184	Upper San Gabriel Valley MWD	\$ 908.67	Recycled Water Expense
13185	Vulcan Materials Company	\$ 686.86	Concrete
13186	Western Water Works	\$ 4,895.54	Inventory
13187	Household Retrofit Program	\$ 471.44	Retrofit Expense
13188	ACWA/JPIA	\$ 46,008.57	Health Benefits
13189	Canon Financial Services, Inc	\$ 82.93	Printing Expense
13190	Cintas	\$ 222.00	Uniform Service
13191	Grainger Inc	\$ 124.96	Field Supplies
13192	MJM Communications & Fire, Inc	\$ 720.00	Security and Monitoring
13193	Petty Cash	\$ 45.54	Office Expense
13194	SG Creative , LLC	\$ 1,870.00	Social Media Expense
13195	Spectrum Business	\$ 40.05	Telephone Service
13196	United Concordia Insurance Co	\$ 3,372.08	Dental Insurance
13197	Verizon Wireless	\$ 76.02	Collectors
13198	Verizon Wireless	\$ 410.65	Telephone Service
13199	Weck Laboratories Inc	\$ 340.00	Water Sampling
13200	Western Water Works	\$ 1,303.43	Tools and Supplies
13201	SC Edison	\$ 42,352.49	Power Expense
13202	United Site Services	\$	Restroom Service @ BP Plant
13203	Verizon Wireless	\$ 114.03	Cellular Service
Online	Home Depot	\$	Field Supplies
	Bluefin Payment Systems	\$	Tokenization Fee
	Bluefin Payment Systems	\$ · ·	Web Merchant Fee's
Auto Deduct	_	\$	Merchant Fee's
Online	Franchise Tax Board	\$	Withholding Order
Online	CalPERS	\$	Retirement Program
Online	CalPERS	\$	GASB-68
Online	Lincoln Financial Group	\$	Deferred Comp
Online	Employment Development Dept	\$	California State & Unemployment Taxes
Online	United States Treasury	\$	Federal, Social Security & Medicare Taxes
	Total Payables	\$ 633,973.03	

La Puente Valley County Water District Payroll Summary

September 2025

	Con 2F
	Sep 25
Employee Wages, Taxes and Adjustments	
Gross Pay	
Total Gross Pay	157,672.12
Deductions from Gross Pay	
457b Plan Employee	-5,563.86
CalPers EEC	-5,779.13
Total Deductions from Gross Pay	-11,342.99
Adjusted Gross Pay	146,329.13
Taxes Withheld	
Federal Withholding	-16,133.00
Medicare Employee	-2,286.02
Social Security Employee	-8,362.24
CA - Withholding	-6,468.09
Medicare Employee Addl Tax	-127.97
Total Taxes Withheld	-33,377.32
Deductions from Net Pay	
Wage Garnishment	-610.00
Total Deductions from Net Pay	-610.00
Net Pay	112,341.81
Employer Taxes and Contributions	
Medicare Company	2,286.02
Social Security Company	8,362.24
CA - Unemployment	53.79
CA - Employment Training Tax	3.59
Total Employer Taxes and Contributions	11,744.50

La Puente Water District September 2025 Disbursements

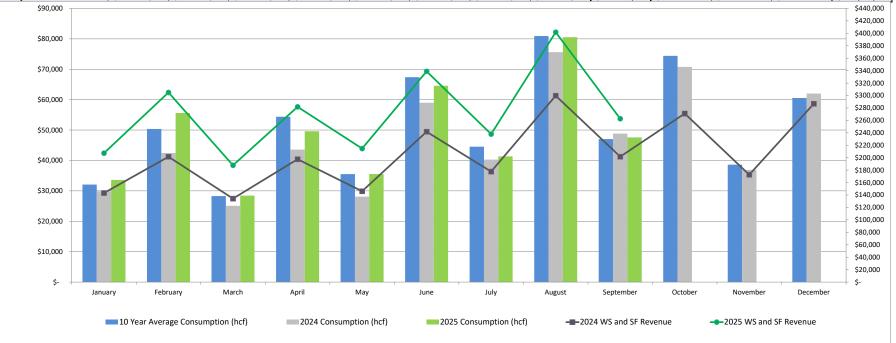
Total Vendor Payables \$ 633,973.03

Total Payroll \$ 112,341.81

Total September 2025 Disbursements \$ 746,314.84

Industry Public Utilities September 2025 Disbursements

Check #	Payee		Amount	Description
6843	Cintas	\$	221.97	Uniform Service
6844	Go To Technologies USA, LLC	\$	142.73	Telephone Service
6845	Highroad IT	\$	1,188.60	Technical Support
6846	InfoSend	\$	71.50	Billing Expense
6847	La Puente Valley County Water District	\$	25.00	Connection Transfer Fee Reimbursement
6848	Merritt's Hardware	\$	279.89	Field Supplies
6849	New Horizons Comm. Corp (NHC)	\$	289.20	Telephone Service
6850	S & J Supply Co Inc	\$	1,692.67	Valve Replacement
6851	San Gabriel Basin WQA	\$	6,618.00	Pumping Rights
6852	Underground Service Alert	\$	78.67	Line Notifications
6853	Vcom Solutions Inc	\$	225.03	Telephone Service
6854	Verizon Connect Fleet USA LLC	\$	121.04	Vehicle Trackers
6855	Weck Laboratories Inc	\$	303.00	Water Sampling
6856	Western Water Works	\$	8,559.75	Hydrant Repair Replace Expense
6857	Verizon Wireless	\$	76.02	Collectors
6858	Verizon Wireless	\$	496.28	Telephone Service
6859	Verizon Wireless	\$	76.02	Collectors
6860	Verizon Wireless	\$	389.62	Telephone Service
6861	San Gabriel Basin WQA	\$	6,618.00	Pumping Rights
6862	Answering Service Care, LLC	\$	155.91	Answering Service
6863	InfoSend	\$	943.58	Billing Expense
6864	La Puente Valley County Water District	\$		IPU Labor Cost
6865	S & J Supply Co Inc	\$	1,379.10	Repair Replace Hydrant
6866	SC Edison	\$		Power Expense
6867	SoCal Gas	\$		Gas Expense
6868	Sol Media	\$		Consumer Confidence Report
6869	Spectrum Business	\$		Telephone Service
6870	Spectrum Business	\$		Telephone Service
6871	Staples	\$		Office Expense
6872	Weck Laboratories Inc	\$		Water Sampling
6873	West Yost & Associates, Inc	\$		AWIA Cyber Assessments
6874	Western Water Works	\$		New ADU & Field Supplies
6875	Citi Cards	\$		Administrative Expense
6876	Industry Public Utility Commission	\$		Industry Hills Power Expense
6877	Janus Pest Management Inc	\$		Pest Control
6878	Staples	\$	12.89	Office Expense
6879	Sunbelt Rentals	\$		Equipment Rental
6880	Vulcan Materials Company	\$		Concrete
6881	Canon Financial Services, Inc	\$		Copier Expense
6882	Cintas	\$		Uniform Service
6883	Civiltec Engineering Inc	\$		Saltlake Interconnection
6884	Duthie Power Services	\$		Preventative Maintenance Expense
6885	Grainger Inc	\$		Field Supplies
6886	MJM Communications & Fire, Inc	\$		Security Monitoring
6887	San Gabriel Valley Water Company	\$		Water Service
6888	SoCal Gas	\$		Gas Expense
6889	Spectrum Business	\$		Telephone Service
6890	Verizon Wireless	\$		Collectors
6891	Verizon Wireless	\$		Telephone Service
6892	Weck Laboratories Inc	\$		Water Sampling
6893	Western Water Works	\$		Sundries and Tools
Online	Home Depot Credit Services	۶ \$		Field Supplies
Online	County of LA Dept of Public Works	۶ \$		Los Angeles County Permits
Ommie	County of LA Dept of Fubilic Works	ڔ	1,300.00	LOS ANGEIES COUNTY FEITHILS


Industry Public Utilities September 2025 Disbursements - continued

Autodeduct Wells Fargo Merchant Fee's	\$ 45.08	Merchant Fee's
Autodeduct Bluefin Payment Systems	\$ 1,813.98	Web CC Fee's
Autodeduct Bluefin Payment Systems	\$ 25.45	Tokenization Fee
Autodeduct Jack Henry	\$ 24.20	Web E-Check Fee's

Total September 2025 Disbursements \$ 171,368.32

WATER SALES REPORT LPVCWD 2025

<u>LPVCWD</u>	Ja	nuary	Feb	oruary		March		April		May		June		July		August	S	eptember	0	ctober	No	ovember	De	ecember		YTD
No. of Customers		1,249		1,247		1,249		1,248		1,249		1,252		1,250		1,248		1,250		-		-		-		11,242
2025 Consumption (hcf)		33,586		55,624		28,446		49,595		35,540		64,562		41,354		80,551		47,586		-		-		-		436,844
10 Year Average Consumption																										
(hcf)	\$	32,078	\$	50,359	\$	28,295	\$	54,392	\$	35,514	\$	67,401	\$	44,519	\$	80,929		47,022	\$	74,422	\$	38,625	\$	60,541		614,097
2025 Water Sales	\$	119,611	\$	201,103	\$	99,733	\$	178,176	\$	126,909	\$	234,909	\$	150,001	\$	297,671	\$	175,074	\$	-	\$	-	\$	-	\$	1,583,186
2024 Water Sales	\$	93,824	\$	135,368	\$	78,021	\$	139,504	\$	87,886	\$	191,345	s	130,558	\$	249,458		160,043	\$	231,211	s	118,038	s	225,659	\$	1,840,916
	Ť		Ť	,	Ť	,	Ť	,	Ť	01,000	Ť	,	Ť	,	Ť	,		100,010			Ť	,	Ť		_	1,010,010
2025 Service Fees	\$	87,672	\$	103,773	\$	88,039	\$	103,642	•	87,872	\$	103,970	_ a	87,917	•	104,150		87,604	¢.		\$	_	s	_		854,637
2025 Service Fees	- P	07,072	Φ	103,773	a .	00,039	Ψ	103,042	Φ	01,012	a a	103,970	Φ	01,911	Ф	104,150	Þ	07,004	Ф	-	- P	-	J D	-	Þ	004,001
2024 Service Fees	\$	77,468	\$	92,205	\$	77,678	\$	93,100	\$	77,886	\$	92,726	\$	78,073	\$	92,300	\$	78,485	\$	92,776	\$	78,179	\$	103,810	\$	1,034,684
2025 WS and SF Revenue	\$	207,283	\$	304,876	\$	187,771	\$	281,818	\$	214,780	\$	338,878	\$	237,918	\$	401,821	\$	262,678	\$	-	\$	-	\$	-	\$	2,437,823
2024 WS and SF Revenue	\$	143,283	\$	201,520	\$	134,258	\$	197,538	\$	146,024	\$	241,774	\$	177,697	\$	299,688	\$	201,620	\$	271,047	\$	172,636	\$	286,786	\$	2,473,872
2025 Hyd Fees	\$	950	\$	750	\$	950	\$	750	s	950	\$	750	\$	950	\$	750	\$	950	\$	_	\$	_	\$	_	\$	7,750
2020, 0. 1 000	_	300	Ψ	700	_		ļ ,	700	_		<u> </u>	700	Ť		 	700	Ť		Ψ		<u> </u>		<u> </u>		Ť	7,100
0005 DO 5	\$	4.457		20.440		4.770	_	07.440	•	4.457	_	20.440	_	4.457	_	20.470		4.457	e						\$	440.040
2025 DC Fees	Ф	1,157	\$	28,148	\$	1,770	\$	27,443	\$	1,157	\$	28,148	\$	1,157	\$	28,178	Þ	1,157	Э	-	\$		\$	-	Þ	118,316
2025 System Revenue	\$	209,390	\$	333,774	\$	190,491	\$	310,011	\$	216,888	\$	367,776	\$	240,025	\$	430,749	\$	264,786	\$	-	\$	-	\$	-	\$	2,563,889
\$90,000																										\$440,000

WATER SALES REPORT CIWS 2025

CIWS	January	F	ebruary	March	April	May	June	July	August	Se	eptember	(October	N	ovember	De	ecember		YTD
No. of Customers	970		891	970	889	974	892	973	891		975		_		_		_		8,425
2025 Consumption (hcf)	52,522		26,776	45,058	24,025	53,182	29,741	61,122	34,746		65,134		_		_		_		392,306
2024 Consumption (hcf)	48,824		27,419	41,544	22,823	43,287	27,061	60,584	34,839		68,126		32,462		55,645		27,661		490,275
10 Year Average Consumption (hcf)	50,108		24,539	44,354	24,628	53,456	30,239	65,512	37,555		70,264		33,400		59,281		27,465		520,800
2025 Water Sales	\$ 181,001	\$	92,837	\$ 153,762	\$ 83,219	\$ 183,763	\$ 103,704	\$ 213,625	\$ 122,574	\$	251,138	\$	-	\$	-	\$	-	\$	1,385,621
2024 Water Sales	\$ 152,132	\$	88,433	\$ 128,604	\$ 72,093	\$ 134,366	\$ 85,005	\$ 192,286	\$ 111,836	\$	240,447	\$	113,373	\$	193,354	\$	95,986	\$	1,607,915
2025 Service Fees	\$ 85,506	\$	68,215	\$ 85,528	\$ 68,071	\$ 85,992	\$ 68,155	\$ 86,326	\$ 67,884	\$	93,856	\$	-	\$	-	\$		\$	709,534
2024 Service Fees	\$ 69,937	\$	55,806	\$ 69,959	\$ 55,844	\$ 69,951	\$ 55,826	\$ 70,001	\$ 56,074	\$	70,292	\$	62,223	\$	77,499	\$	62,142	\$	775,554
2025 Hyd Fees	\$ 1,500	\$	300	\$ 1,500	\$ 300	\$ 1,500	\$ 300	\$ 1,550	\$ 300	\$	1,550	\$	-	\$	-	\$		\$	8,800
2025 DC Fees	\$ 24,481	\$	7,518	\$ 24,481	\$ 7,318	\$ 24,165	\$ 7,518	\$ 24,165	7,518	\$	26,340		-	\$	-	\$	-	\$	153,504
2025 System Revenues	\$ 292,488	\$	168,870	\$ 265,270	\$ 158,908	\$ 295,420	\$ 179,677	\$ 325,666	\$ 198,277	\$	372,884	\$	-	\$	-	\$	_	\$:	2,257,459

STAFF*Report*

Meeting Date: October 13, 2025

To: Honorable Board of Directors

Subject: Consideration of Proposal for Replacement of Single Pass Ion Exchange

Pre-Filters.

Purpose: To secure services for the replacement of the single pass ion exchange

(SPIX) pre-filters.

Recommendation: Authorize the General Manager to Purchase SPIX Pre-Filters from

Harrington Industrial Plastics.

Fiscal Impact: The 2025 CIP Treatment Plant Budget appropriates \$235,000 for SPIX

Pre-Filter Vessels. The 2025 year to date total for this expense category is \$0.00. The cost for replacing the SPIX Pre-Filters is \$198,000, which is within the Budget appropriation. The cost for replacing the SPIX Pre-Filters is a BPOU Project expense and shall be 100% reimbursed by the

Cooperating Respondents.

BACKGROUND

The BPOU Treatment Plant uses a Single Pass Ion Exchange as one of its treatment processes, a component of this process are the pre-filter vessels that filter the water of any sediment down to 10 microns with bag filters. Staff have been addressing these pre-filter vessels issues since 2015 when the first relining and recoating was completed, and the second relining and recoating was completed in 2017. The relining and recoating process was initiated due to signs of corrosion issues inside of the coated carbon steel vessels. Small pinhole corrosion points turned into larger ones and needed to be repaired. Staff have been mitigating these effects of the vessel corrosion with constant cleaning and chlorinating of the vessels during bag change outs. The vessels themselves were installed in 2009, making them 16 years old and having been relined and coated a couple of times. Each time the coating lasts only a few weeks to a month before new pinholes or hairline sections begin to resurface.

SUMMARY

The scope of work generally consists of procuring two (2) new 304 stainless steel (SS) filter bag vessels. The District issued requests for proposals (RFPs) using identical specifications and scope to ensure consistency across submittals. The table below summarizes the proposals received as follows:

Procurement of Two (2) Filter Bag Vessels									
Contractor	Proposal Amount								
Harrington Ind. Plastics	\$198,000.00								
Towner Filtration	\$198,615.34								
WA Rasic	\$466,880.00								

FISCAL IMPACT

The 2025 CIP Treatment Plant Budget appropriates \$235,000 for SPIX Pre-Filter Vessels. The 2025 year to date total for this expense category is \$0.00. The cost for replacing the SPIX Pre-Filters is \$198,000, which is within the Budget appropriation. The cost for replacing the SPIX Pre-Filters is a BPOU Project expense and shall be 100% reimbursed by the Cooperating Respondents.

RECOMMENDATION

Authorize the General Manager to Purchase SPIX Pre-Filters from Harrington Industrial Plastics.

Respectfully Submitted,

Roy Frausto

General Manager

ENCLOSURES

- Proposal from Harrington Industrial Plastics

Harrington Industrial Plastics LLC

Harrington Industrial Plastics 10440 Ontiveros Place Unit 2 Santa Fe Springs CA 90670

Phone: 562-941-1969 Fax:

Attention: SANTIAGO

Company: LA PUENTE VALLEY COUNTY WATER

To: jwhitesel@hipco.com

From: Jay P. Whitesel

Subject: QUOTE 001L4318

Memo:

03/13/25 02:36 PM PDT Harrington Ind Plast Harrington Ind Page 2 of 3 #7530280

Harrington Industrial Plastics 10440 Ontiveros Place Unit 2 Santa Fe Springs CA 90670 562-941-1969 Fax

Quotation# 001L4318 Written: JPW Quote Date 03/12/25 Expire Date 08/31/25 1 OF 2 Page

Quotation

069352 LA PUENTE VALLEY COUNTY WATER DISTRICT P O BOX 3136 LA PUENTE, CA 91744

Ship To: LA PUENTE VALLEY COUNTY WATER DISTRICT

P O BOX 3136

LA PUENTE, CA 91744

RFO# MULTI-BAG VESSELS Job:

Contact: SANTIAGO Ship Via: BEST WAY POSSIBLE
Phone#: 626-330-2126 FOB / Delivery ARO: SHIPPING POINT
Fax: 626-330-2679 Frt-Terms: CHRG INBOUND & OUTBOUND

______ Product/Description Quantity Price U/M Extension

*3099 FILTER PRODUCTS MISC FILTER BAG HSG 304SS 12" FLG (44) #2 BASKET HYDRAULIC LIFT 2 90000.00 EA 180,000.00

MULTI-ROUND BAG HOUSING, 304SS CONSTRUCTION, 12" 150# FLANGED CONNECTIONS (BOTTOM IN/BOTTOM OUT IN-LINE), (44) 316SS #2 RESTRAINER BASKETS WITH BAG LOCKING RINGS, SWING BOLT HYDRAULIC LIFT LID, DIFFERENTIAL/DRAIN/VENT CONNECTIONS, EPDM SEAL, PASSIVATED WITH BEAD BLAST EXTERIOR FINISH AND 150PSI DESIGN PRESSURE. HOUSING WILL BE DROP IN TO EXISTING CARBON STEEL UNIT, APPROVAL DRAWING WITH ORDER (WE WILL REQUIRE BASIC PIPING ELEVATION & CENTERLINES).

ESTIMATED LEAD TIME IS 20-24 WEEKS AFTER APPROVAL.

FOB: INDIANA

FREIGHT NOT INCLUDED IN QUOTE

Harrington's standard Terms and conditions apply. Please visit https://www.hipco.com/terms-and-conditions-sale for the full Terms and Conditions

Harrington Industrial Plastics
10440 Ontiveros Place Unit 2
Santa Fe Springs CA 90670
Fax
Page 2 OF 2

Product/Description

Harrington Industrial Plastics
Quotation# 001L4318
Written: JPW
Quote Date 03/12/25
Expire Date 08/31/25
Page 2 OF 2

Product/Description
Quantity
Price U/M Extension

 Merchandise
 Tax
 Est.Freight / Handling
 Net Quote Total

 180,000.00
 18,000.00
 0.00
 198,000.00

Thanks For Thinking Harrington.

Respectfully Jay P. Whitesel

All Quotations are subject to review upon placement of order. Freight/Handling and applicable taxes if not listed above will be added. Harrington standard terms and conditions apply to this quote.

STAFF*Report*

Date: October 13, 2025

To: Honorable Board of Directors

Subject: Consideration of Proposal from Karbonous for the Replacement of (4)

40,000 lbs. liquid-phase granular activated carbon (LGAC) Vessels for the

Intermediate Zone Treatment System.

Purpose: Secure services for the replacement of the LGAC vessels for PVOU-IZ.

Recommendation: Authorize the General Manager to Enter into an Agreement with Karbonous.

Fiscal Impact: The PVOU-IZ 2025 Budget appropriates \$368,000 for LGAC Replacement

Services. The 2025 current year-to-date total for this expense category is \$0.00. The cost of \$346,860 for the carbon replacement services is within

budget appropriation and is a PVOU-IZ related expense.

BACKGROUND

La Puente Valley County Water District (LPVCWD) was tasked with procuring proposals for the replacement of four (4) 40,000-pound liquid-phase granular activated carbon (LGAC) vessels for the Puente Valley Operable Unit (PVOU) Intermediate Zone (IZ) Treatment System. This directive was provided by Stantec on behalf of Northrop Grumman via e-mail on August 18, 2025.

Recent water quality sampling showed low level J Flag hits for Total Petroleum Hydrocarbons (TPH). While the system remains in compliance, Stantec recommended moving forward with replacing the carbon in the lead vessels to ensure continued reliability and to allow for better tracking of system performance over time. In addition, Stantec advised that the District conduct additional well sampling and operate the system in a consistent manner so treatment data can be better understood.

SUMMARY

Under the direction of Stantec on behalf of Northrop Grumman, LPVCWD initiated the RFP process to replace four carbon treatment vessels at the PVOU-IZ Treatment System. This step is being taken to ensure the treatment system continues operating reliably, remains in compliance, and allows for better tracking of long-term performance.

In response to the District's Request for Proposals, two firms submitted proposals for the vessel replacement work. A summary of the proposals is provided in the table below:

	Carbon Activated Corp.	Karbonous	Desotec
Total Cost	\$400,264.00	\$346,860.00	Did not bid

FISCAL IMPACT

The PVOU-IZ 2025 Budget appropriates \$368,000 for LGAC Replacement Services. The 2025 current year-to-date total for this expense category is \$0.00. The cost of \$346,860 for the carbon replacement services is within budget appropriation and is a PVOU-IZ related expense.

RECOMMENDATION

Authorize the General Manager to enter into an agreement with Karbonous.

Respectfully Submitted,

Roy Frausto

General Manager

ENCLOSURES

- Enclosure 1: Proposal from Karbonous

12.3 Granular Activated Carbon - Liquid Phase

	12x30 Virgin Coconut Shell LGAC
Quantity (lbs) :	160,000
Unit Price [1] :	\$ 1.98/lbs.
Tax :	\$28,860.00
Energy _. Surcharge	0
Other [2] :	N/A
Total Unit Cost :	\$2.16 /lbs.

Notes:

- [1] Cost includes, but is not limited to the removal, transport and disposal of the spent carbon and the supply, delivery, and loading of the replacement carbon as specified in this RFP.
- [2] Includes all costs not included in [1].

Please list additional items included during typical carbon service (e.g. backwashing, disinfection, inspection, equipment rentals, etc.) and items that may not necessarily be included during typical carbon service (e.g. caustic wash, confined space entry, waste profile, equipment rentals, additional hauling, etc.). If the costs have not already been included in the bid schedule table above, please provide costs for these additional items. if the costs are already included in the bid schedule table above, please so state.

Items included during Typical	<u>Unit Price</u>	
1) Backwashing 2) Disinfection 3) Vessel Inspection 4) Acid Washing – to neutral position 5) Other (please indicate:		\$ Included \$ Included \$ Included \$ Included \$ Included
o) Other (prodeo marcato.		Ψ
Items Not Necessarily Include	ed during Typical Carbon Service	<u>Unit Price</u>
1) Confined Space Entry	\$300 per hour / per Yosia Wahani	\$ <u>400/Hr</u>
2) Waste Profiling		\$ Included
3) Additional Hauling		\$ <u>550/Hr</u>
4) Caustic Washing		\$ 9,750/ vessel
5) Equipment Rentals		\$ <u>525/Hr</u>
6) Other (please indicate):		\$

13.0 WARRANTY AND GUARANTEE

The Contractor shall warrant and guarantee that all Work will be in strict accordance with the Contract Documents and it will be free from defects in designs, materials, workmanship and equipment. The Contractor shall warrant and guarantee that all carbons meet the required specifications of Section 8.0 of the Technical Specifications of this RFP. Contractor shall, at the District's option, promptly correct or remove and replace defective or non-conforming parts, and materials, reperform non-conforming Work, or refund the Contract Price therefor. The Contractor shall bear all direct, indirect, and consequential damages and costs of such correction or removal including but not limited to fees and charges of engineers, attorneys, and other professionals made necessary thereby.

STAFF*Report*

Date: October 13, 2025

To: Honorable Board of Directors

Subject: Consideration of Proposal from Global Urban Strategies, Inc. for Grant

Writing and Research Services

Purpose: To provide ongoing grant research, writing, and related program support

services for the District.

Recommendation: Authorize the General Manager to enter into a Professional Services

Agreement with Global Urban Strategies, Inc.

Fiscal Impact: The District's 2025 Budget includes an appropriation of \$150,000 for

professional services. Year-to-date expenditures for this expense category total \$72,926.92. The proposed agreement with Global Urban Strategies, Inc. would be billed at a monthly retainer of \$4,000, which can be accommodated within the existing budget allocation and will be used as a

basis to develop the District's 2026 Budget.

BACKGROUND

The District continually seeks opportunities to leverage outside funding sources to support water quality improvements, infrastructure investments, conservation initiatives, and customer service programs. Specialized grant writing and research expertise is critical to position the District competitively for state, federal, and other funding opportunities.

Historically, the District has pursued grants on a case-by-case basis with limited in-house resources. However, as regulatory requirements grow and infrastructure investment needs expand, a more structured and proactive approach to grant development is essential. Partnering with a dedicated firm will position the District to maximize funding opportunities, reduce reliance on ratepayer revenues, and accelerate progress on the District's capital improvement plan and operational priorities.

SUMMARY

Global Urban Strategies, Inc. is a California S-Corporation and a certified Disabled Veteran Business Enterprise (DVBE), Disadvantaged Business Enterprise (DBE), and Small Business Enterprise (SBE). Led by President Omar E. Hernandez, Global has secured hundreds of millions of dollars in competitive grants for water, wastewater, energy, transportation, housing, and other public sector projects. Their proposal outlines a comprehensive, results-driven process that includes continuous monitoring of opportunities, readiness assessments, full proposal development, and post-award support.

Staff is requesting Board consideration of a Professional Services Agreement with Global Urban Strategies, Inc ("Global") to provide ongoing grant research, grant writing, and program support services.

Engaging Global will allow the District to more effectively identify, compete for, and secure outside funding to support capital improvements, water quality projects, conservation programming, and customer service initiatives. Global brings extensive experience and a proven track record of obtaining competitive funding for public agencies across California.

The District has identified several areas where grant writing services would be beneficial. A list of upcoming projects is provided below:

LPVCWD Potential Grant Projects 2025					
Project Name	Description	Purpose	E	stimated Cost	
		Allows for centralized location			
	Operational hub/EOC.	to respond and dispatch crews			
Water Utility Operations &	Construct a new District office	faster, promotes efficient			
Emergency Response	and maintenance yard in one	communication and houses			
Center	location.	centralized SCADA networks.	\$	12,000,000	
	Replace old or leaking	Infrastructure improvement,			
	waterlines to reduce water loss,	reducing unaccounted non-			
Inyo St. & Common Ave.	improve fire flow reliability, and	revenue water, and provides			
(Waterline)	avoid breakages.	public health/safety benefits.	\$	650,000	
	Replace old or leaking	Infrastructure improvement,			
	waterlines to reduce water loss,	reducing unaccounted non-			
Hacienda Blvd. & Temple	improve fire flow reliability, and	revenue water, and provides			
Ave. (Waterline)	avoid breakages.	public health/safety benefits.	\$	350,000	
	Replace old or leaking	Infrastructure improvement,			
	waterlines to reduce water loss,	reducing unaccounted non-			
Bamboo St. & Main St.	improve fire flow reliability, and	revenue water, and provides			
(Waterline)	avoid breakages.	public health/safety benefits.	\$	350,000	
	Replace old or leaking	Infrastructure improvement,			
	waterlines to reduce water loss,	reducing unaccounted non-			
San Jose Ave. to Del Valle	improve fire flow reliability, and	revenue water, and provides			
Ave. (Waterline)	avoid breakages.	public health/safety benefits.	\$	350,000	
		Lessens dependence on potable			
	Recycled water for irrigation for	supply; provides regional			
	COI civic center, LP park and LP	benefit and enhances water			
Recyled Water Phase 2	Highschool	reliability.	\$	5,000,000	
		Assess whether waterline need			
		to be replaced by 2034 based on			
		age of pipe (1959). Understand			
B: 1: A		whether it is in good condition			
Pipeline Assessment	Assess pipeline integrity on Old	or poor condition to schedule	*	20.000	
Project	Valley, Central Ave, Abbey St.	replacement.	\$	20,000	
	Dalina maamain t	Ensures supply reliability during			
4 0 MC Toul S	Reline reservoirs to ensure	normal operations and during		4 000 000	
1.8 MG Tank Recoating	reliability	emergencies.	\$	1,000,000	

	1	T	1	
		Improves O&M, reduces		
	SCADA Comms/ Controls for	outages, and better system		
SCADA System	Recycled Water PS, Banbridge	operation; reducing		
Optimization	PS and Pleasanthome PS	failure/public health risks.	\$	300,000
		Increase reliability and		
	Replace booster 3 with more	redundancy in operational		
Main St. Booster 3	efficient pump and smaller	booster pumps to feed Zone 2		
Replacement	motor	and Zone 4.	\$	200,000
	Replace analog meters with			
	smart or "meter-to-cloud"	Improves water conservation,		
	meters to better track usage,	customer service, and reduces		
	detect leaks, improve billing	water loss.		
AMI Meter Project	accuracy.		\$	720,000
		Promotes efficiency and reduces		
		utility strikes and trench hazards		
		during valve/service repairs—		
Vactor Truck	Purchase new Vactor truck	fewer outages, lower risk.	\$	350,000
	Purchase Meter Test bench to	Increases water accountability		
Meter Test Bench	test meters	and reduces water loss.	\$	250,000
	Backup power capabilities in the			•
	event fixed generators fail.			
	Allows for manual transfer to	Ensures supply reliability during		
	allow portable generators to be	normal operations and during		
Electrical Upgrades for	mobilized and connected to run	emergencies.		
Generator Backup	pump stations.		\$	250,000
		Ensures fuel supply during	т	
Portable Fuel Trailers	Purchase of towable fuel trailers	emergencies.	\$	150,000
	Backup power systems,	Improve resilience, especially		,
Portable Generators	redundancy in supply	during an emergency.	\$	150,000
. Ortable Generators	reading in supply	Develops road map to ensure	Ψ	130,000
	Develop a 10 year water master	CIP are being addressed to		
	plan with hydraulic model	ensure system is being		
10 Year Water Master Plan	update.	maintained adequately.	\$	175,000
To real Water Master Flam	apadic.	, ,	Υ	173,000
Valva Banlacaments	Critical valve replacements	Improve reliability and avoid	\$	200.000
Valve Replacements	Critical valve replacements	major neighborhood shutdowns.	Ş	200,000
		Pressure management and distribution leak detection.		
	Install concers or areassure			
Last Datastian Dasans	Install sensors or pressure	Strong cost-savings +	.	200.000
Leak Detection Program	monitoring to locate leaks.	conservation benefits.	\$	200,000
		Maintains safe, reliable drinking		
		water during emergencies and		
	B	preserves fire-flow. In addition,		
	Retrofit Main St. reservoirs for a	avoids high consequence losses		
Reservoir Seismic Retrofit	potential seismic event.	and emergency costs		1

		Prevents large amount of water	
		loss, provides safety during	
	Install hydrant guard check	response to incident and cuts	
Hydrant Guard Valves	valves at all hydrant locations	down further property damage.	\$ 800,000
Water Conservation	Rebates for efficient fixtures,	Supports conservation	
Program(s)	public outreach/education.		\$ 100,000

FISCAL IMPACT

The District's 2025 Budget includes an appropriation of \$150,000 for professional services. Year-to-date expenditures for this expense category total \$72,926.92. The proposed agreement with Global Urban Strategies, Inc. would be billed at a monthly retainer of \$4,000, which can be accommodated within the existing budget allocation and will be used as a basis to develop the District's 2026 Budget.

RECOMMENDATION

Authorize the General Manager to enter into a professional services agreement with Global Urban Strategies, Inc.

Respectfully Submitted,

Roy Frausto

General Manager

ENCLOSURES

- Enclosure 1: Proposal from Global Urban Strategies, Inc.

Grant Writing and Research Services

www.global-urban.com

- 100 E. Huntington Drive Suite 207, Alhambra, CA 91801
- Phone: (626) 414-3645 Fax: (626) 389-5636

Attn: La Puente Valley County Water District

112 N 1st St, La Puente, CA 91744

Due date: September 22, 2025

September 22, 2025

La Puente Valley County Water District Mr. Roy Frausto General Manager 112 N 1st St La Puente, CA 91744

Dear Mr. Frausto and Members of the Board,

Global Urban Strategies, Inc. ("Global") is pleased to submit this proposal to provide ongoing grant research, grant writing, and related program support services to the La Puente Valley County Water District ("LPVCWD"). Our work will advance LPVCWD's mission to deliver high-quality, reliable drinking water and responsive service to the community while meeting or exceeding all applicable regulatory standards.

Global is a California S-Corporation and a certified Disabled Veteran Business Enterprise (DVBE), Disadvantaged Business Enterprise (DBE), and Small Business Enterprise (SBE). Our team has secured hundreds of millions of dollars for agencies across California in the water, infrastructure, housing, and public works sectors by converting priorities into competitive, fundable projects. We are ready to bring that same results-driven approach to LPVCWD.

We appreciate your consideration and look forward to partnering with LPVCWD. If you have any questions, please contact me at (626) 545-2234 or omar@global-urban.com.

Sincerely,

Omar E. Hernandez

President

100 E. Huntington Drive Suite 207, Alhambra, CA 91801

Phone: (626) 414-3645 **Fax:** (626) 389-5636 **www.global-urban.com**

TECHNICAL PROPOSAL & SCOPE OF SERVICES

Upon execution of a Professional Services Agreement, Global will convene a kickoff meeting with LPVCWD leadership to confirm funding priorities, active projects, and timelines. We will establish roles, define decision points, and finalize a rolling 12-month grant calendar and opportunity pipeline aligned with LPVCWD's capital improvement plan, water quality and treatment objectives, conservation programming, and customer-service initiatives.

Task 1 Opportunity Monitoring & Grant Matrix

Global will continuously monitor federal, state, regional, and philanthropic funding opportunities suitable for LPVCWD. We will maintain a living Grant Matrix that tracks deadlines, eligibility, cost share, evaluation criteria, and required partnerships. Each month, we will brief LPVCWD on recommended targets and timing, including pre-application steps (letters of support, council/board actions, and resolutions).

Task 2 Readiness & Strategic Positioning

For priority opportunities, Global will complete funder-specific readiness checklists and advise on scope, budget, match strategy, measurable outcomes, and compliance requirements. We will coordinate with LPVCWD's General Manager and technical staff to obtain data and documentation (e.g., water-quality metrics, asset inventories, engineering exhibits, procurement/contracting policies, and adopted plans) to support competitive scoring.

Task 3 Full-Service Proposal Development

Global will draft, compile, and submit complete proposal packages, including narratives, work plans, schedules, performance measures, budgets, cost-effectiveness analyses, environmental and permitting status, and letters/MOUs. We will prepare board actions and certifications as needed, coordinate partner commitments, and format/upload materials to funder portals before the deadline.

Task 4 Post-Submission Support

Global will track application status, respond to Requests for Information (RFIs), prepare presentation materials for interviews, and assist with on-site or virtual reviews. Upon award, if requested, we will support the transition to LPVCWD staff for grant administration or scope a separate task order for post-award management and reporting.

Task 5 Reporting & Project Management

Each month, Global will provide a concise status report summarizing: (1) opportunities identified and screened; (2) proposals in development and due dates; (3) submissions completed; and (4) awards and next steps. We will also maintain a shared calendar of deadlines and a document tracker to ensure on-time, compliant submissions.

Monthly Deliverables (Included in Retainer)

- Curated Grant Matrix update and monthly briefing call/meeting.
- Up to two (2) competitive grant proposals drafted and submitted, subject to mutually agreed priorities and timelines.
- Preparation of required board resolutions, letters of support, and standard attachments for included proposals.
- Monthly status report, rolling 12-month grant calendar, and document tracker.
- RFI/clarification responses for submitted proposals.

Note: Extremely complex proposals (e.g., large federal awards requiring extensive engineering, environmental, or multi-jurisdictional partnerships) may be scoped separately by mutual consent before work begins.

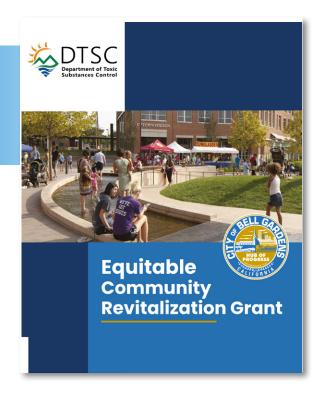
PRICE PROPOSAL

Global proposes a fixed **monthly retainer** of **\$4,000** for the scope and deliverables described above. The retainer encompasses strategic advisory services, research and tracking, grant writing, partner coordination, and reporting. Out-of-scope services requested by LPVCWD will be authorized in advance and billed under a mutually agreed task order.

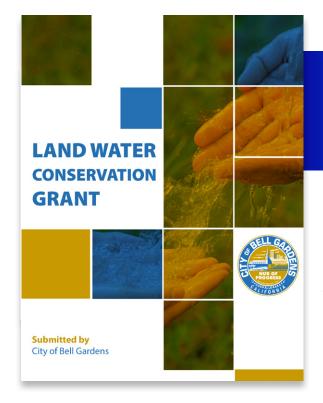
Term & Administration

- Initial term: month-to-month, cancellable by either party with 30-days' written notice.
- *Invoicing*: monthly in arrears; payment due within 30 days.
- *Materials:* LPVCWD will provide timely access to data, budgets, maps, engineering exhibits, and prior studies as needed.
- *Compliance:* All work products will support LPVCWD's procurement, auditing, and records-retention requirements.

STATEMENT OF QUALIFICATIONS & EXPERIENCE


Global Urban Strategies, Inc. is a results-driven grants and program-delivery firm led by combat-disabled Marine veteran Omar E. Hernandez (DVBE/SBE certified). Our team has secured hundreds of millions of dollars in competitive funding for municipal and special district clients across California, including projects for water, wastewater, energy, transportation, housing, parks, and public safety initiatives. We pair disciplined project management with persuasive storytelling that centers on community benefits, cost-effectiveness, and regulatory compliance.

Representative water-sector capabilities include readiness assessments; Water SMART and state water-infrastructure applications; drought-resiliency and conservation programming; treatment and distribution capital projects; public-engagement and board-action support; and post-award reporting and compliance.


City of Bell GardensDepartment of
Toxic Substances Control

\$6,495,000.00

Equitable Communities Revitalization Grant

City of Bell GardensNational Park Services,
Dep. of Interior

\$6,000,000.00

Land and Water Conservation Fund

City of RosemeadCA Department of
Parks and Recreation

\$580,750.00

Land and Water
Conservation Fund

OMAR E. HERNANDEZ

President

Dynamic and results-driven executive with over two decades of leadership experience, serving as the President of Global Urban Strategies, Inc. Demonstrated expertise in program management, technical writing, community and stakeholder engagement, and strategic consulting, delivering impactful results for a diverse array of clients.

SKILLS & AREAS OF EXPERTISE

- Leadership & Teamwork
- Critical Thinking & Problem Solving
- Financial Management
- Organizational Skills

- Innovation & Visionary Thinking
- Conflict Resolution
- Program Management
- Multilingual Community Outreach

PROFESSIONAL EXPERIENCE

Global Urban Strategies, Inc. | Alhambra, CA *President*

August 2004 - Present

- Led a team of 25 professionals proficient in program management, grant writing and administration, communication services, and digital/print design, ensuring projects are executed on time and within budget, while maintaining the highest quality standards.
- Fostered collaboration between Global Urban Strategies and clients, including municipalities and public agencies, ensuring successful partnerships and client satisfaction.
- Implemented multilingual communication strategies to engage diverse communities, build support, and address concerns for contentious projects.
- Oversee Home Improvement Programs and First Time Homebuyers Programs across diverse municipalities, including the effective management of 400+ loans through Home, CDBG, and CalHome funding mechanisms, ensuring successful implementation and impactful community development.
- Delivered innovative, technology-driven solutions to enhance data collection and analyticsbased decision-making for clients.
- Conduct impactful public scoping and design charrettes to discern community wants versus needs to promote fair and efficient resource allocation.
- Developed a coalition of San Gabriel Valley cities to advocate for the Eastside Gold Line Extension Phase 2 and 710 Extension Project, securing MOUs among 6 cities, creating a spending plan, and coordinating advocacy efforts.

Perfectly Planned Marketing, Inc. | Los Angeles, CA

President/CEO

October 2000 - March 2005

- Founded and managed a full-service political, marketing, advertising, and public relations firm, leading 43 staff members and delivering innovative solutions.
- Executed contracts for clients such as the USDA, Kaiser Permanente, LAUSD, Lincoln Hospital, Regency Outdoor, PriMed Medical Group, and other notable organizations across healthcare, education, entertainment, and development sectors.

United States Marine Corps.

Sergeant, Forward Observer

May 1989 – February 1995

- Served with 1st ANGLICO (Air Naval Gunfire Liaison Company), specializing in combined arms, fire support, and communications to support partner units across military operations.
- Led, developed, and managed the logistical and operational needs of 300 Marines.
- As a non-commissioned officer, implemented commanders' directives, trained, and disciplined Marines in hostile and non-hostile environments.
- Service-disabled veteran deployed to Operations Desert Shield/Storm (Gulf War) and Operation Restore Hope (Somalia).

EDUCATION & CERTIFICATIONS

University of Southern California | Los Angeles, CA

Master of Business Administration Bachelor of Science in Political Science

2003 1999

• (4) Dean's Awards and (3) President's Awards (GPA of 3.5 or higher)

East Los Angeles College | Monterey Park, CA

General Education Requirements

Feb 1995 - June 1997

Certifications

Media Buying Academy, Dale Carnegie Professional Development Course USC Bridges to Business Certification

2022

RECOGNITION

- United Nations Medal
- Kuwait Liberation Medal
- (2) Good Conduct Medals
- Meritorious Unit Citation
- National Defense Medal
- (2) Meritorious Masts
- Certificate of Appreciation (USC MAAA)
- Honorable Discharge

- Award of Merit (LA County)
- (3) Commendations (LA County)
- (2) Certificates of Appreciation (City of LA)
- Certificates of Recognition (50th & 57th Assembly District)
- Certificates of Recognition (30th & 22nd Senate District)

CINTHIA INIGUEZ

Director of Operations

Ms. Iniguez, a dedicated professional pursuing her Master of Business Administration candidate, brings strategic insight and leadership as Director of Operations. She excels at articulating complex ideas and driving impactful initiatives. Overseeing housing programs across multiple cities, she also supports Global's client relations and communications. Committed to growth, she is passionate about positive change and community enrichment.

SKILLS & AREAS OF EXPERTISE

- Leadership and Team Development
- Bilingual (English/ Spanish)
- Community Engagement
- Critical Thinking & Problem Solving
- Attention to Detail

- Adaptability and Resilience
- Effective Communication
- Project Oversight
- Willingness to Learn
- Data Analysis and Reporting

PROFESSIONAL EXPERIENCE

Global Urban Strategies, Inc. | Alhambra, CA *Director of Operations*

July 2021 - Present

- Led a team, fostering a high-performance culture and ensuring seamless operations.
- Developed and implemented strategies to streamline processes, reduce costs, and enhance service delivery.
- Formulate and implement strategic plans to drive program success, aligning project objectives with organizational goals and priorities.
- Monitor and evaluate program outcomes rigorously, compiling and presenting comprehensive reports to stakeholders and state representatives.
- Initiate the inception of the program and oversee its ongoing execution. Ensure alignment with defined scopes, schedules, and budget constraints through meticulous planning, execution, and monitoring.
- Execute and manage the CalHome First-Time Home Buyer and Owner-Occupied Rehabilitation Programs for three city clients, guaranteeing seamless implementation and strict adherence to program guidelines.

Shakey's Pizza Parlor | San Gabriel, Hollywood, Alhambra, CA

Assistant Manager Shift Leader June 2017 – July 2021 April 2016 – June 2017

- Implemented performance improvement plans to optimize operational efficiency and reduce costs.
- Developed and implemented policies and procedures to ensure compliance with company standards and industry regulations.
- Conducted performance evaluations and provided constructive feedback to team members, fostering professional growth and development.
- Collaborated with management to develop and implement promotional campaigns, increasing sales revenue.

EDUCATION & CERTIFICATIONS

University of California, Irvine | The Paul Merage School of Business, Irvine, CA

Master of Business Administration

August 2025

• **Relevant Courses:** Organizational Leadership, Microeconomics, Business Analytics, Financial Reporting.

California State University, Los Angeles | Los Angeles, CA

Bachelor of Arts Sociology option in Law and Society

August 2021

- Relevant Courses: Introduction to Sociology, Elementary Statistics, Intermediate Statistics, Sociology of Race/Ethnicity, Class, and Gender, Quantitative Research and Writing, Qualitative Research and Writing, Sociological Theory, Sociology of Law, Environmental Policy, Law, and Society.
- **Civic Learning:** Implemented and promoted the Alumni Mentoring Program at California State University Los Angeles, including both Flash Mentoring and Traditional Mentoring initiatives. Executed outreach strategies to drive program growth and collaborated with classmates to raise awareness within the Cal State LA community.

East Los Angeles College | Los Angeles, CA

Associate of Arts General Studies Social and Behavioral Sciences

June 2019

• **Relevant Courses:** Government of the United States, Introduction to Sociology, Statistics, Great Women in the Humanities, English Composition and Critical Thinking.

DOMONIQUE DUNNICK

Senior Program and Grant Administrator

Domonique Dunnick is an accomplished Senior Program and Grant Administrator with over 6 years of experience in public health. Her expertise in engaging diverse communities aligns with the evolving grant landscape, emphasizing equity, diversity, and inclusion. Mrs. Dunnick excels in grant administration, demonstrating expertise in grant monitoring, reporting, and project management. She has refined her ability to establish stakeholder collaboration systems, ensuring projects meet objectives in compliance with grant requirements.

SKILLS & AREAS OF EXPERTISE

- Grant and Program Administration
- Project Management
- Streamlining Processes
- Grant Monitoring and Reporting
- Stakeholder Engagement
- Research and Data Analysis
- Community Health Analysis

PROFESSIONAL EXPERIENCE

Global Urban Strategies, Inc. | Alhambra, CA *Senior Program and Grant Administrator*

September 2022 - Present

- Oversees program and grant administration ensuring compliance with funding requirements and optimizing grant management processes for municipalities and state agencies. Develops and refines systems to streamline application, reporting, and fund allocation procedures, enhancing efficiency and program success.
- Revitalizes program and administration processes for municipalities and state agencies, implementing efficient systems. Spearheads grant administration strategies, optimizes resource allocation, and significantly improves project outcomes.
- Collaborates with local governments to implement funded programs within their communities. Employs coalition building, meeting facilitation, and stakeholder engagement to ensure execution and enhanced program impact.
- Leads collaborative efforts with municipalities to formulate impactful public health action plans. Facilitates discussions and strategic planning sessions, resulting in the development of targeted and effective plans for enhanced community well-being.

CRI Genetics | Santa Monica, CA

Research Scientist

July 2021 – August 2022

- Managed a pharmacogenetics clinical observational study refining drug therapy prescriptions for over 30 participants. The study laid the foundation for targeted interventions based on findings, leading to significant improvements in drug therapy and patient outcomes.
- Researched and crafted engaging content for over 30 health-related reports, improving health literacy and informed decision-making for over 200,000 consumers.
- Conducted scientific research to develop 3 emerging products, providing analytics for market viability. These insights were integral in guiding decision-making during the development phase, paving the way for adjustments and strategic planning.
- Developed, reviewed, and coordinated reports to ensure the incorporation of public health trends and statistical data.

Beach Cities Health District | Redondo Beach, CA

Program Development

July 2017 – January 2019

- Led the development of the mental health campaign. Achieved impactful outcomes, significantly raising awareness, and fostering positive conversations around mental health within the community.
- Instructed the CEO, directors, and supporting staff on community health analysis methods through presentations and visual aids. This effort resulted in widespread adoption of the presented community health analysis methods within the organization, enhancing decisionmaking and community-focused initiatives.
- Collaborated with Yale University to assess the health of over 100,000 residents and restructure the community's well-being index. This partnership led to comprehensive insights that informed improvements, positively impacting community health.
- Researched and developed evidence-based community engagement methods to reduce stress and enhance mental well-being.

EDUCATION & CERTIFICATIONS

Benedictine University Lisle, IL	
Master of Public Health	2019
Health Education and Promotion Certification	2019
Howard University Washington, D.C.	
Bachelor of Science	2011

- Major: Health, Human Performance, and Leisure Studies
- Minor: Chemistry
- Concentration: Sports Medicine

RASHAD MEDLEY

Program Administrator

Mr. Medley, a seasoned Program Manager with 10+ years in nonprofit leadership, specializes in preparing youth of color to close wealth and achievement gaps. He excels in restorative practices, trauma-informed approaches, and "near peer" mentoring. With strategic planning, he has led impactful, equity-driven initiatives. Passionate about collaboration, he fosters inclusive environments built on respect, compassion, and measurable outcomes. Mr. Medley has a proven track record of advancing racial equity through innovative, data-driven solutions for lasting community impact.

SKILLS & AREAS OF EXPERTISE

- Program Coordination & Administration
- Budgeting & Financial Management
- Stakeholder Engagement & Communication

- Process Improvement & Efficiency
- Data Analysis & Reporting
- Team Leadership & Collaboration
- Project Management & Scheduling

PROFESSIONAL EXPERIENCE

Global Urban Strategies, Inc. | Alhambra, CA *Program Administrator*

September 2022 – Present

- Manages the lifecycle of grants, overseeing implementation, monitoring, and closeout processes.
- Ensures strict compliance with grantor guidelines and regulations, minimizing risk and maximizing efficiency.
- Maintains meticulous records of all grants and programs, including financial reports/invoices, progress reports, and compliance documents.
- Drafts and submits detailed progress reports to funders, demonstrating impactful utilization of resources.
- Collaborates closely with the finance department to monitor grant budgets, expenditures, and financial reporting, optimizing fund allocation and utilization.
- Cultivates strong stakeholder relationships through proactive engagement and communication.
- Provides crucial support in project, operational, and event coordination, ensuring seamless execution of initiatives.

Jenesse Center Family Source Center | Los Angeles, CA

Site Director

March 2024 - December 2024

- Oversaw daily operations across multiple departments, ensuring alignment with organizational goals.
- Led staff management, strategic planning, and project development for continuous improvement.
- Collaborated with leadership and external partners to enhance resources and program reach.
- Ensured compliance with funding contracts and regulatory guidelines.
- Managed research, data analysis, and reporting for agency projects.

Mentoring Urban Students and Teens | Seattle, WA *Deputy Director*

March 2023 - March 2024

- Managed the financial budget and expenses, optimizing cost efficiency.
- Collaborated with executive team members on development needs.
- Updated and negotiated department contracts.
- Assisted in hosting board meetings.
- Managed data and reporting.
- Provided oversight of the financial services program, guiding program managers and area directors.

Child Care Resources | Seattle, WA

Childcare Subsidy Lead

September 2021 - February 2022

- Managed a team of Subsidy Billing Specialists, processing \$300k-\$500k monthly.
- Supervised family engagement staff supporting 100–200 families
- Led training, goal setting, and task delegation for efficiency.
- Set goals and delegated tasks to ensure timely billing.
- Created and implemented a training plan for distributing American Rescue Plan Act Subsidies.
- Supported special projects, transitioning subsidies to the new Best Start for Kids program.
- Prepared and presented monthly data reports for external partners.
- Utilized Tableau for data analysis and reporting.

EDUCATION & CERTIFICATIONS

• Full Sail University | Orlando, FL

Bachelor of Fine Arts in Creative Writing for Entertainment

November 2013

MAISIE PETERS

Senior Grant Writer

Ms. Peters works with the Grants and Proposals Manager to develop grant applications, maintain records, update databases, and participate in team meetings to enhance grant strategies. As Senior Grant Writer, she ensures clients access current funding opportunities and creates detailed breakdowns of NOFOs and RFPs. Her background and experience in the nonprofit sector have given her expertise in ecological and wildlife conservation, education, public health, and social policy.

SKILLS & AREAS OF EXPERTISE

- Project narrative writing
- Timeline management
- RFP analysis
- Qualitative and quantitative data analysis
- Strategic thinking

- Organizational skills
- Effective communication
- Attention to detail
- Areas of expertise include conservation, education and healthcare access, and disability rights.

PROFESSIONAL EXPERIENCE

Global Urban Strategies, Inc. | Alhambra, CA *Senior Grant Writer*

July 2024 – Present

- Assists in developing grant applications, including project narratives, budgets, timelines, letters of support, standard forms, and other required documents.
- Maintains records of department-related documents, maintains databases with grant statuses and deadlines, and works with the Grant Acquisition team to enhance grant procurement strategies.
- Updates grant matrices for core clients, ensuring a current list of funding opportunities is available.
- Reviews and creates detailed breakdowns of Notices of Funding Opportunities (NOFOs) and Requests for Proposals (RFPs), highlighting key dates, application requirements, funder priorities, and proposal structures.

"Ding" Darling Wildlife Society | Sanibel, FL

Community Development Intern

August 2023 - July 2024

- Assisted with fundraising, marketing, and social media operations at a conservation nonprofit supporting a National Wildlife Refuge.
- Wrote grant proposals for foundation and government grants, managed grant deadlines, and identified new funding opportunities.
- Managed the grant reporting process, including writing reports, tracking expenditures, managing deadlines, and ensuring compliance with funder requirements.
- Produced written and visual content for the website, newsletter, donor solicitation, blog, and social media, and managed daily content schedules for multiple social media accounts with over 40,000 followers.

Miami University Department of Sociology; Statistics | Oxford, OH Student Administrative Assistant September 2021 - May 2023

- Provided general administrative support, including scheduling, maintaining records system, and directing department visitors to ensure efficient operation of the departments
- Assisted faculty and staff with preparing and organizing academic materials, such as course syllabi, exams, and reports, while maintaining strict confidentiality.
- Assisted with planning and execution of department events.

EDUCATION & CERTIFICATIONS

Miami University | Oxford, OH

Bachelor of Arts in Sociology

May 2023

- **Relevant Courses:** Research Methods, Geography of Urban Diversity, Social Stratification, Sociocultural Studies in Education, Social Forces and Aging, Economy and Society
- Awards/Honors: Graduated Summa Cum Laude, Phi Beta Kappa Honors Society, Alpha Kappa Delta Sociology Honors Society, President's List (top 3% of Undergraduates), Sherry Corbett Social Action Award, Betty Kent Scholarship for Independent Research

American Grant Writers' Association

Grant Writing for Nonprofits Certificate

2024

Grant News Watch

Certified Development Professional

2024

BRET BASS

Senior Grant Writer

Mr. Bass comes to Global Urban Strategies as a highly accomplished proposal and content strategist with over 20 years of experience leading high-stakes proposal development, grant awards, and business capture efforts for federal and commercial clients. Proven track record of securing major contracts. Expertise in managing the entire proposal lifecycle, from capture and strategy to writing, team leadership, and submission. Combines deep knowledge of federal acquisition regulations (FAR) with strategic content development to consistently deliver winning proposals and drive significant revenue growth.

SKILLS & AREAS OF EXPERTISE

- Proposal and Grant Writing
- Proposal Management
- Content Strategy and Developmen
- Trade and Investigative Journalism
- Technical Writing
- Policies & Procedures (SOPs, Handbooks, Knowledge Bases)

- Communications & Outreach
- Al Prompt and Context Engineering
- Public Relations
- Inbound Marketing
- Executive Leadership
- Data Analysis, Metrics, KPI, Reporting
- Executive Leadership

PROFESSIONAL EXPERIENCE

Global Urban Strategies, Inc. | Alhambra, CA

Senior Grant Writer

2025 - Present

- Collaborate with clients to assess specific needs, goals, and challenges associated with ongoing projects, programs, and community initiatives, enabling a comprehensive understanding of needs.
- Develop competitive grant proposals, including extensive research and scoping, crafting compelling narratives, drafting persuasive letters of support, developing detailed budgets and community engagement plans, and completing necessary forms to achieve funding goals.
- Manage the end-to-end Request for Proposals (RFP) process, coordinating research, narrative development, form completion, and budget planning to ensure alignment with organizational goals and objectives.

RockPaperSushi | Long Beach, CA

Co-Founder 2018 – 2025

- Led all facets of the private and public sector grant and capture processes.
- For a large defense contractor, secured a substantial contract award of \$500 million.
- Drove a 233% revenue increase for a small client, from \$6 million to \$20 million, in just two years by leading proposal and capture activities.
- Secured significant federal contracts with agencies such as the Defense Health Agency, Small Business Administration, Department of Commerce, Department of the Air Force, and U.S. Customs and Border Protection.
- Authored and developed a wide range of supporting documentation, including operational plans, policies, technical manuals, security documentation, quality control and quality assurance plans, and reporting systems to support proposal implementation.
- Ensured strict regulatory compliance across all proposal and operational activities, including FAR, HIPAA, DOL, and FLSA.

Crowdstaffing

Vice President of Strategic Operations

2014 - 2018

- Directed proposal, content, and marketing strategies that increased company revenue from \$9 million to \$35 million in two years.
- Secured 10 new major contracts in the first year through successful RFP responses, with wins including Google, Gap, Royal Bank of Canada, and NBC Universal.
- Provided executive leadership for strategic corporate planning, overseeing operations and marketing managers.
- Oversaw the content marketing strategy and managed a team of staff writers and marketing personnel.
- Authored influential, industry-recognized content, including ebooks, articles in publications such as Forbes, and technical documentation, to support business development goals.
- Ensured business, legal, labor, and regulatory compliance in all operations.

EDUCATION & CERTIFICATIONS

Southern New Hampshire University Manchester, NH	2024
BA English and Creative Writing President's List and Dean's List all terms Lifetime Member Sigma Tau Delta International English Honor Society	
University of Vienna, Ph.D. Behavioral Psychology	2023
Sheffield University, MA Journalism	1993

JACKELINE LANDA

Creative Director

Ms. Landa is a seasoned Creative Director with over a decade of experience, known for her innovative approach in driving creative excellence across diverse industries. She excels in transforming concepts into visually stunning campaigns, leading cross-functional teams with her strategic and collaborative style. Committed to delivering impactful solutions aligned with business objectives, Ms. Landa fosters a creative culture that encourages exploration and innovation.

SKILLS & AREAS OF EXPERTISE

- Creative Leadership and Cross-Functional Collaboration
- Strategic Thinking and Problem Solving
- Market Awareness

- Visual Thinking and Conceptualization Skills
- Project and Budget Management
- Adaptability and Innovation

PROFESSIONAL EXPERIENCE

Global Urban Strategies, Inc. | Alhambra, CA

Creative Director

2018 - Present

- Spearhead the development of comprehensive creative strategies that align with organizational goals and target audience preferences.
- Lead and inspire cross-functional creative teams, providing direction and mentorship to designers, copywriters, and other creative professionals.
- Drive the evolution and consistency of brand identity across all channels, ensuring a cohesive and compelling brand presence.
- Conceptualize and develop innovative and effective marketing campaigns, from ideation to execution, across various platforms including digital, print, and social media.
- Work closely with clients to understand their objectives, provide creative solutions, and ensure client satisfaction throughout the project lifecycle.
- Oversee creative project budgets, ensuring efficient use of resources and timely project delivery within financial constraints.
- Implement rigorous quality control processes to maintain the highest standards of creative output, including design, copy, and multimedia elements.
- Utilize analytics and key performance indicators to measure the success of creative campaigns and make data-driven recommendations for continuous improvement.

Advertising Graphic Arts

Account Executive 2016-2018

- Developed and maintained strong relationships with clients, serving as the primary point of contact for their printing needs.
- Collaborated with clients to understand project requirements, specifications, and deadlines, ensuring clear communication and customer satisfaction.
- Worked closely with the production team to coordinate and manage the execution of print jobs, ensuring quality standards and timely delivery.
- Managed and maintained client accounts, keeping detailed records of project specifications, communication, and billing information.
- Monitored and managed project budgets, ensuring profitability and cost-effectiveness for both the client and the print shop.

Independent Contractor

Freelance Graphic Designer / College Typography Professor

2015 - 2016

- Produced visually appealing designs for various print and digital media, including brochures, logos, social media graphics, and websites.
- Managed end-to-end design processes, from concept ideation and sketching to final production and delivery.
- Designed and delivered specialized lectures on typography principles, history, and advanced typographic techniques, fostering a comprehensive understanding among students.
- Mentored and guided students in exploring advanced typographic concepts, emphasizing the importance of type in visual communication.
- Conducted assessments and provided detailed feedback on students' typographic projects, fostering a culture of excellence and continuous improvement.

EDUCATION & CERTIFICATIONS

Central American University Jose Simeon Cañas

Master's in Communication
Postgraduate in Strategic Management

May 2016 November 2015

Don Bosco University (Specialization in Marketing)

Bachelor's Degree in Graphic Design

May 2012

CONTACT

Omar E. Hernandez | President & CEO Global Urban Strategies, Inc.

Phone: (626) 545-2234

Email: Omar@global-urban.com

www.global-urban.com

100 E. Huntington Drive Suite 207, Alhambra, CA 91801

Phone: (626) 414-3645 **Fax:** (626) 389-5636

www.global-urban.com

STAFF*Report*

Meeting Date: October 13, 2025

To: Honorable Board of Directors

Subject: Rules and Regulations Governing Water Service Update

Purpose: Update the District's Rules and Regulations Governing Water Service and

Supersede Ordinance 2011-1 and Resolution No. 256

Recommendation: Consider the introduction of Ordinance 2025-01 and direct staff to proceed

with publication of the Ordinance in advance of the October 27, 2025

public hearing to consider approval of the Ordinance.

Fiscal Impact: None.

BACKGROUND

Under the provisions of California Water Code Sections 30000 et seq., the District has the authority to establish rules and regulations governing the sale, distribution, and use of water. The District's current *Rules and Regulations Governing Water Service* were adopted in November 2018 by Resolution No. 256. Prior to that, the rules and regulations were established under Ordinance No. 2011-1.

The purpose of the Rules and Regulations Governing Water Service is to:

- Establish the terms and conditions under which the District provides potable water service to its customers.
- Ensure uniformity and fairness in the delivery of water service.
 Inform the public of administrative procedures and technical requirements for obtaining and maintaining water service.
- Establish a contract between the District and each person, corporation, or property owner supplied with water service.

During the review of backflow requirements for temporary construction meters, staff identified that the installation of backflow prevention devices and related labor resulted in higher costs than previously reflected in the existing policy. Upon reviewing practices from neighboring water agencies, staff determined that the District's current procedures were not as favorable to District operations. Therefore, an update to the construction meter policy is recommended to ensure consistency, cost recovery, and improved operational control.

SUMMARY

The District is responsible for implementing and enforcing the Rules and Regulations Governing Water Service. Staff recommends updating Section 2.6 – Temporary/Construction Service to reflect the revised construction meter policy.

The proposed update incorporates revised fees, clearer usage terms, and administrative improvements to better align with industry practices and protect District assets.

The proposed language for Section 2.6 is as follows:

2.6 Temporary / Construction Service

Any applicant desiring a temporary water service from a fire hydrant for construction purposes shall specify in the application the location of the hydrant or hydrants from which service is requested. Upon approval of the application, the District will provide a construction meter to the applicant in accordance with the following terms and conditions:

a) Deposit and Application Fee

A refundable deposit of four thousand dollars (\$4,000.00) is required prior to issuance of a construction meter. A non-refundable application fee of thirty dollars (\$30.00) will be deducted from the deposit at the time of issuance.

b) Billing and Charges

The construction meter account shall be billed monthly. Monthly charges shall include a daily rate of seven dollars (\$7.00) per day, plus all water usage recorded by the meter. Water usage shall be charged at the construction rate equivalent to the Tier 2 potable rate for Zone 1 residential customers, or as otherwise established by Board action. The District will render an invoice to the applicant by the tenth (10th) day of a month for water used in the prior month. That invoice shall be paid within fifteen (15) days of when the invoice was provided to the applicant. Any amounts remaining unpaid at conclusion of the use of the meter may be deducted from the deposit provided.

c) Use of Construction Meter

The construction meter remains the property of the District and is provided solely for temporary construction purposes. The meter must not be tampered with, altered, or relocated by the applicant. Any damage to, or tampering with, the construction meter may result in forfeiture of the deposit and assessment of additional charges for repair or replacement. The applicant shall be responsible to replace the meter if it is lost or stolen.

d) Relocation

Relocation of a construction meter shall only be performed by District personnel. If relocation is required, the District will determine whether a new application must be submitted. Unauthorized relocation may result in removal of the meter, forfeiture of the deposit, and termination of service. A relocation fee may apply if deemed appropriate by the District.

e) Termination of Service and Refund

Upon completion of construction or termination of use, the customer shall notify the District immediately. The construction meter must be returned in good working condition and subject to inspection by District personnel. The deposit, less the application fee, daily charges, and water usage charges, will be refunded once the final account balance has been settled. If total charges exceed the deposit, the applicant will be responsible for paying the remaining balance.

FISCAL IMPACT

None.

RECOMMENDATION

Consider the introduction of Ordinance 2025-01 and direct staff to proceed with publication of the Ordinance in advance of the October 27, 2025, public hearing to consider approval of the Ordinance.

Respectfully Submitted,

Shaunte Maldonado

Shaunte Maldonado

Customer Service and Accounting Supervisor

ENCLOSURES

Ordinance No. 2025-01

ORDINANCE NO. 2025-01

AN ORDINANCE OF THE BOARD OF DIRECTORS OF THE LA PUENTE VALLEY COUNTY WATER DISTRICT UPDATING THE DISTRICT'S RULES AND REGULATIONS GOVERNING WATER SERVICE AND SUPERSEDING ORDINANCE NO. 2011-1 AND RESOLUTION NO. 256

WHEREAS, under the provisions of California Water Code Sections 30000 et seq., the La Puente Valley County Water District ("District") has the authority to establish and enforce rules and regulations governing the sale, distribution, and use of water within its service area; and

WHEREAS, the District's *Rules and Regulations Governing Water Service* were last comprehensively adopted by Ordinance No. 2011-1 and subsequently updated by Resolution No. 256, adopted in 2018; and

WHEREAS, staff has recommended the update of Section 2.6 – Temporary / Construction Service within the *Rules and Regulations Governing Water Service* to reflect the revised Construction Meter Policy and associated fees, as set forth herein;

NOW, THEREFORE, BE IT ORDAINED by the Board of Directors of the La Puente Valley County Water District as follows:

SECTION 1. ADOPTION.

The Board of Directors hereby adopts updated *Rules and Regulations Governing Water Service*, including the revised language for Section 2.6 – Temporary / Construction Service, as follows:

2.6 Temporary / Construction Service

Any applicant desiring a temporary water service from a fire hydrant for construction purposes shall specify in the application the location of the hydrant or hydrants from which service is requested. Upon approval of the application, the District will provide a construction meter to the applicant in accordance with the following terms and conditions:

a) Deposit and Application Fee

A refundable deposit of four thousand dollars (\$4,000.00) is required prior to issuance of a construction meter. A non-refundable application fee of thirty dollars (\$30.00) will be deducted from the deposit at the time of issuance.

b) Billing and Charges

The construction meter account shall be billed monthly. Monthly charges shall include a daily rate of seven dollars (\$7.00) per day, plus all water usage recorded by the meter. Water usage shall be charged at the construction rate equivalent to the Tier 2 potable rate for Zone 1 residential customers, or as otherwise established by Board action. The District will render an invoice to the applicant by the tenth (10th) day of a month for water

used in the prior month. That invoice shall be paid within fifteen (15) days of when the invoice was provided to the applicant. Any amounts remaining unpaid at conclusion of the use of the meter may be deducted from the deposit provided.

c) Use of Construction Meter

The construction meter remains the property of the District and is provided solely for temporary construction purposes. The meter must not be tampered with, altered, or relocated by the applicant. Any damage to, or tampering with, the construction meter may result in forfeiture of the deposit and assessment of additional charges for repair or replacement. The applicant shall be responsible to replace the meter if it is lost or stolen.

d) Relocation

Relocation of a construction meter shall only be performed by District personnel. If relocation is required, the District will determine whether a new application must be submitted. Unauthorized relocation may result in removal of the meter, forfeiture of the deposit, and termination of service. A relocation fee may apply if deemed appropriate by the District.

e) Termination of Service and Refund

Upon completion of construction or termination of use, the customer shall notify the District immediately. The construction meter must be returned in good working condition and is subject to inspection by District personnel. The deposit, less the application fee, daily charges, and water usage charges, will be refunded once the final account balance has been settled. If total charges exceed the deposit, the applicant will be responsible for paying the remaining balance.

SECTION 2. SUPERSESSION.

This Ordinance supersedes and replaces Ordinance No. 2011-1 and Resolution No. 256 in their entirety.

SECTION 3. FUTURE UPDATES.

Any future updates to the District's *Rules and Regulations Governing Water Service*, shall be adopted by **Board Resolution** to maintain consistency and transparency in administration.

SECTION 4. EFFECTIVE DATE.

This Ordinance shall take effect and be in full force **thirty (30) days** after its adoption.

Said Ordinance	was adopted.	on roll cal	l vote, at t	he regular	meeting of	of the Bo	ard of	Directors
held on October	27, 2025, by	the followin	g vote:					

Ayes:	
Noes:	
Absent:	
Ahstain:	

I certify that the foregoing is a true and correct copy of Ordinance No. 2025-01, adopted by the Board of Directors of the La Puente Valley County Water District at its regular meeting held on October 27, 2025.			
	President		
	Board of Directors		
	La Puente Valley County Water District		
ATTEST:			
Roy Frausto, Board Secretary			

Memo

To: Honorable Board of Directors

Date: October 13, 2025

From: Cesar A. Ortiz, Operations & Treatment Superintendent
Subject: Monthly Operations & Treatment Superintendent Report

The following report summarizes LPVCWD, IPU Waterworks System, BPOU and PVOU-IZ & SZ treatment operations, water quality, compliance, production, and consumption, and includes the status of various projects for each system.

WATER QUALITY / COMPLIANCE

- **Distribution System Monitoring** District Staff collected all required water quality samples for the month from both distribution systems, **33** samples from **LPVCWD** & **33** samples from **CIWS**. All results met State and Federal drinking water quality regulations.
- Treatment Monitoring & Compliance All water quality compliance samples were collected from all the treatment processes and plant effluent, as required. Approximately 224 samples were collected for BPOU, 0 samples for PVOU-IZ, and 0 samples for PVOU-SZ.
- **Source Monitoring** All water quality samples were collected from all the Wells, as required. Approximately **33** samples were collected.
- The table below summarizes **LPVCWD Wells**' current water quality for contaminants of concern.

Well Sampled	CTC	PCE	TCE	Perchlorate	1,4-Dioxane	NDMA	Nitrate
•	MC L=6 ppb	MCL = 5 ppb	MCL = 5 ppb	MCL=6 ppb	NL=1 ppb	NL=10 ppt	MCL=10 ppm
LPVCWD 2	NR	NR	NR	NR	NR	NR	NR
LPVCWD 3	ND	ND	2.9	10	ND	2.3	9.5
LPVCWD 5	NR	NR	NR	NR	NR	NR	NR

 $ND-None\ Detected$

NS - Not Sampled

NR - No Results available as of report date

• The Monthly Nitrate Concentrations for SP-6 and SP-15 are provided as *Attachment 1*.

WELL PRODUCTION AND LEVELS

Production by Wells and total acre feet for LPVCWD and CIWS are as shown in the table below.

LPVCWD - BPOU Wells	Well 2	Well 3	Well 5	Total Acre Feet Produced
Acre Feet Produced	125.49 AF	0.53 AF	175.29 AF	301.30 AF

CIWS Wells	CIWS Well 5 to SGVWC	SGVWC to CIWS at Lomitas
Acre Feet Produced	143.87 AF	108.15 AF

Suburban Water System	159.69 AF	Total Acre Feet Delivered to
-----------------------	-----------	------------------------------

OPERATIONAL UPDATES / PROJECTS & MAINTENANCE ACTIVITIES

BPOU Treatment Plant

• Plant Operations –

o The treatment plant is in normal operation at 2500 gpm with Well No. 2 & Well No. 5 online and Well No. 3 being only run monthly for sampling purposes.

• Project / Maintenance Items –

- There are some ongoing maintenance and repair projects on the Nitrate system, the SPIX Pre-Filter Vessels, and the SPIX Influent meter, and all being addressed by staff or contractors.
- Staff have performed various weekly chemical calibrations, monthly analyzer cleanings and calibrations, SPIX pre-filter change-outs, daily treatment plant rounds and monthly reporting.

2) PVOU-IZ Treatment Plant

Plant Operations –

- O Staff initiated the restart of the IZ plant to normal intern operation, while awaiting SWRCB-DDW permit approval. Operating at a flow of approximately 600 gpm and rotating equipment during operations. NOTE* on July 31st, 2025, NG rep requested the PVOU IZ Plant be shut down due to a J-flag notification of TPH in one of the sample results no new update on plant operations.
- Staff is working on creating a sampling plan to move forward with monitoring of the PVOU IZ Wells and Treatment Plant processes.

- LP Staff has received proposals from vendors for the issued RFP for liquid phase granular activated carbon change outs on the four lead vessels of the PVOU-IZ LGAC system, this item is up for board approval.
- When the IZ plant goes back to normal operation, the IZ plant will run for 20 days at a time, and it is then shut down for 24 hours and then restarted, per the NPDES requirements, until approval is received from SWRCB-DDW.

Maintenance Items –

 Ongoing maintenance on analyzers and a small list of other outstanding items for repair or replacement.

3) PVOU-SZ Treatment Plant

• Plant Operations –

O Under the direction of Northrup Grumman rep, LP staff is continuing to run the SZ plant when possible and operate at 85-125 gpm with discharge to LACSD and as wastewater tank levels permit, the tank is used in conjunction with the IZ plant as well, operations vary daily depending on tank levels.

• Maintenance Items –

O Staff conduct plant and sampling ports prep, general plant maintenance, preventative maintenance, corrective maintenance, order chemicals, and housekeeping.

4) CIWS Distribution Sites

 The Lomitas generator replacement project has been completed. Staff acquired a current City of Industry contractor for maintenance and service of the new unit with the first maintenance service already completed.

Nitrate Concentrations

SP-6 (Treatment Plant Effluent) and SP-15 (Combined Nitrate System Effluent)

EPA Method 353.2 MCL = 10 mg/L

Nitrate Concentrations SEPTEMBER 2025				
Date	SP-6	SP-15	Well(s)	Comments
8/5/2025	6.2	6.2	2	Weck Lab (353.2)
8/7/2025	6.0	6.1	2	Weck Lab (353.2)
8/11/2025	6.2	6.2	2	Weck Lab (353.2)
8/14/2025	6.1	6.1	2	Weck Lab (353.2)
8/18/2025	6.8	6.8	2	Weck Lab (353.2)
8/21/2025	6.0	6.1	2	Weck Lab (353.2)
8/25/2025	N/A	6.3	2	Weck Lab (353.2)
9/2/2025	6.4	6.4	2 & 5	Weck Lab (353.2)
9/4/2025	7.2	7.2	2 & 5	Weck Lab (353.2)
9/8/2025	7.7	8.0	2 & 5	Weck Lab (353.2)
9/11/2025	7.7	7.7	2 & 5	Weck Lab (353.2)
9/15/2025	7.8	7.8	2 & 5	Weck Lab (353.2)
9/18/2025	6.7	6.8	2 & 5	Weck Lab (353.2)
9/22/2025	N/A	7.2	2 & 5	Weck Lab (353.2)
9/25/2025	7.3	7.4	2 & 5	Weck Lab (353.2)
9/29/2025	N/A	7.4	2 & 5	Weck Lab (353.2)

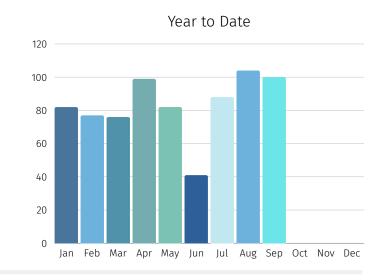
AVERAGE	6.8	6.9
MINIMUM	6.0	6.1
MAXIMUM	7.8	8.0

Notes:

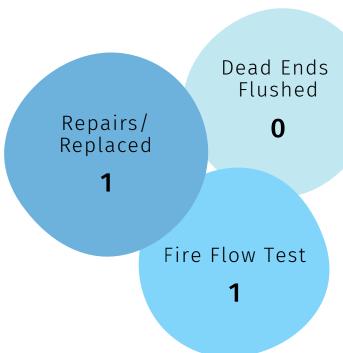
All units reported in milligrams per Liter (mg/L)

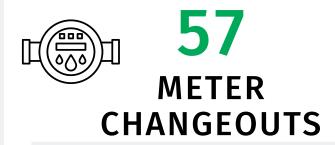
MCL = Maximum Contaminent Level

N/A = Not Available (Lab Results)


112 N. First St. La Puente, Ca 91744

Attachment 1


SUMMARY


MONTHLY METRICS

Repair/Replace Service Line	9
Repair/Replace Main Line	0
New Service Installations	1
Install New Air Release or Blow Off	1
USA Tickets Processed	89

Service Line Replacements

229 3rd St.

16145 Banbridge St

148 Greenbriar

La Puente Valley County Water District

Hydrant Replacement

Administrative Report October 13, 2025

Board Communication

- Open Enrollment
- Date of Last Trainings:

Training	Argudo	Barajas	Escalera	Hernandez	Rojas
Ethics	5/16/23	11/14/23	3/4/25	2/24/25	3/10/25
Harassment	10/20/22	11/15/23	12/1/22	4/16/25	5/7/24

Public Communication & Outreach

- Splash Cash Program

Website

Cross Connection Added

Social Media

Торіс	Comments			
Number of Instagram Posts	7			
Number of Instagram Stories	7			
Number of Instagram Followers	636			
Post Related to Main Shutdowns	0			
Number of LinkedIn Posts	7			
Number of LinkedIn Followers	5			
CET Program	1			
CET Scholarship	0			

Memo

Date: October 13, 2024

To: Honorable Board of Directors

Subject: Open Enrollment 2026

Open Enrollment for the 2026 plan year will be held from 10/7/25 to 10/21/25. We urge you to take some time to learn about your options to prepare yourself to make the very best choices for you and your family during Open Enrollment. This is the one time of year you can make changes to your benefits, unless you experience a documented mid-year qualifying event, such as marriage, birth, gain or loss of other group health coverage. If a mid-year qualifying event occurs, benefit changes must be completed within 31 days of the event. Otherwise, you will have to wait until the following Open Enrollment to enroll in or drop coverage for yourself or your dependents.

If you do not want to make any changes, no action is required on your part. If you would like to make changes, please see Angelina for an enrollment form.

Anthem and Kaiser Enrollees

- Due to SB 729, effective January 1, 2026, the Anthem and Kaiser HMO plans will include state mandated infertility benefits. Please refer to the applicable benefit summary and evidence of coverage (once published) for details of these benefits.
- Members of Kaiser HMO and CDHP, Anthem PPO and CDHP, and Anthem HMO medical plans through ACWA JPIA are eligible for Modern Health. This mental health and well-being benefit through Modern Health makes mental healthcare accessible in a timely manner, with appointments typically available within 48 hours. Modern Health offers one-on-one therapy, coaching, live group sessions, meditations, and other educational content on your smart phone or tablet. This benefit is available to all employees and retirees enrolled in ACWA JPIA Anthem and Kaiser medical plans. Dependents are also eligible, regardless of enrollment. Learn more with this short video. Register today at https://my.joinmodernhealth.com.

Anthem Enrollees Only

- Anthem PPO Classic If you ever need surgery in the future, please remember to check out the Carrum Health benefit. This optional surgery benefit for Anthem PPO participants provides a second opinion and, if surgery is needed, travel for you and a companion to a top surgeon at a world-class surgical facility. Carrum offers a \$250 incentive if you obtain a second opinion from them before moving forward with your surgery. Learn more at info.carrumhealth.com/acwaipia.
- Board members enrolled in Anthem HMO or PPO plans are eligible to join Wellhub, giving you access to gyms, studios, classes, virtual training, and wellness apps all with one membership! The gym and fitness options available depend on the membership level and cost you choose. The higher the level, the more options there are, including more premium partners. Go here to learn more about Wellhub.

VSP

Vision Plan Enhancements! Effective **January 1, 2026**, the eyeglass frame allowance and the contact lens allowance on our VSP vision plan will each increase to \$170.

Open enrollment is a good time to make sure your mailing address is up to date and/or your life beneficiaries. For more information about your benefits or open enrollment, please contact Angelina.

Here's to a healthy road ahead!

Sincerely, Argelina Pavilla

Angelina Padilla

HR Coordinator/Admin Assistant

General Manager's Report

Date: October 13, 2025

To: Honorable Board of Directors **From:** Roy Frausto, General Manager

RE: General Manager's Report

GENERAL MANAGER REPORT TOPICS

- PVOU Permit Amendment DDW requested that LPVCWD develop a sampling plan to sample the IZ plant throughout all treatment components to verify efficacy of COC removal and analysis of TPH throughout the sources and system. This plan will be implemented after the issuance of a permit amendment.
- PVOU TPH Ongoing investigation of TPH detections at the PVOU-IZ and SZ systems.
 Currently working on understanding the efficacy of LGAC on TPH. Currently, Stantec is taking the primary lead on working towards resolving the TPH issue for both the IZ and SZ.
- Golden Mussel Shut-down from LA County Public Works.
- District Office Staff is working with CNC engineering and City staff to develop a description
 of the proposed property. Site survey was completed.
- BPOU Agreement Preliminary meetings of the BPOU Agreement have begun.
- UV System Replacement Staff is working with Civiltec to conduct a feasibility study of the UV Flex system and is planning to complete the study be Q4 of this year.
- Salt Lake Project –Project has been formally awarded, and work is expected to begin late December.
- Bamboo St. & Dalesford Dr. CIP Staff is beginning the planning and design phase of the Bamboo St. & Dalesford Dr. project that consist of installing a pressure sustaining/regulating valve on Bamboo Street.

STAFFING

- Luis Serrano 2 Years of Service
- New Hire Phillip Velasquez

GENERAL MANAGER ACTIVITIES SEPTEMBER 2025

Meetings/Activity	Date			
Management Weekly Meeting	September 1, 8, 12, 22, 29			
Operational Incidents (Bi-Weekly)	September 2, 16			
PWAG GM Cyber Series Session #3	September 2			
NG/LPVCWD Bi-Weekly Meeting	September 2, 16, 30			
IPUC-0014 Turnbull Canyon Rd. and Salt Lake Ave. Waterline Improvements Ph.1 Preconstruction Meeting	September 3			
Watermaster Board Meeting	September 3			
PVOU – HASP Discussion	September 4			
LPVCWD & NG MOU Development	September 5			
Monthly Public Outreach Meeting	September 9			
Producer Meeting	September 10			
Watermaster Basin Management	September 10			
IPUC Meeting	September 11			
BPOU Project Committee Meeting	September 11			
Utility Coordination Turnbull Canyon Bi-Weekly Meeting	September 11			
Interviews	September 11			
CPR Training	September 15			
WQA Board Meeting	September 17			
IT Management Meeting	September 17			
IPU Water Ops	September 18			
Quarterly Staff Luncheon	September 19			
Meeting w/ Congressman Gil Cisneros	September 22			
SGVWA Legislative Meeting + Board Meeting	September 22			
PVOU Budget Meeting	September 22			
Zoom Call w/ Valencia	September 22			
Puente Basin Watermaster Meeting	September 23			
BPOU Project Agreement Renewal Meetings	September 23			
SCWUA Breakfast + Board Meeting	September 25			
Project Meeting	September 29			
La Puente SOP Project – Kickoff Meeting	September 29			
Check in Lunch with Employee	September 30			

Page 2 of 2

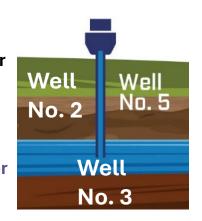
Enclosure

- Sep 2025: Water Resources Analytics

SEP 2025 – WATER RESOURCE ANALYTICS

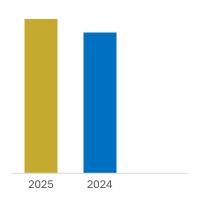
Key Operational Data for Managing Our Water Resources

Meeting Date: October 13, 2025



Sep 2025 Water **Production**

301 Acre Feet


Sep 2025 Recycled Water

Production 2.4 Acre Feet

Water Conservation

Sep 2025: 142 Acre Feet Sep 2024: 139 Acre Feet

Monthly Water Consumption

LPVCWD System:

142 Acre Feet

SWS System:

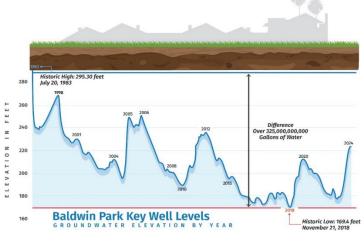
159 Acre Feet

Rainfall 0.08 Inches Year to

Date (Rain Year July to July)

Snowpack Statewide

Snow Water Equivalent: 0 Inches


Groundwater Level at the **Key Well**

Current Level 250.3 Feet

Historic High

Historic Low

295.3 ft. - July 1983 169.4 ft. - Nov 2018

CA Drought Monitor

Upcoming Events

Date: September 22, 2025

To: Honorable Board of Directors

RE: Upcoming Meetings and Conferences for 2025

Day/Date	Event	<u>Argudo</u>	<u>Barajas</u>	Escalera	<u>Hernandez</u>	<u>Rojas</u>
October 7-9, 2025	Watersmart Innovations Conference 2025; Reno, NV		X	X	X	
December 2-4, 2025	ACWA 2025 Fall Conference; San Diego, CA			X	X	X

